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Abstract 
This paper assesses ‘aggregate vulnerability’, a measure of systemic risk, in the investment 
fund sector of Luxembourg by implementing a macroprudential stress testing model. While 
based on the proposal by Fricke and Fricke (2017), this paper focuses on the calibration of 
key parameters such as the flow-performance sensitivity and price impacts that are included 
in the model to capture the so-called ‘second-round effects’ of an initial adverse shock to 
funds’ returns. According to the empirical results, limited degrees of vulnerability were found 
for the main fund categories such as equity funds, bond funds and mixed funds. This implies 
that the investment fund sector in Luxembourg does not raise any particular concern for 
financial stability as of November 2019. However, since the stress test was performed 
against a background of increased risk of a reversal in global risk premia, continued 
monitoring of the sector is warranted. 
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Non-technical summary 

With net assets under management (AuM) amounting to more than €5 trillion as of 
September 2019, the investment fund sector in Luxembourg is an important component of 
the financial sector. As the investment fund sector remains sensitive to global developments 
at a time when there is elevated risk of a reversal of risk premia, the probability that 
vulnerabilities within the sector might trigger systemic risks may be elevated. In this context, 
authorities need to establish a macroprudential monitoring framework that applies to the 
investment fund sector.  

This study proposes to assess the investment fund sector’s ‘aggregate vulnerability (AV)’, 
a measure of systemic risk, by implementing macroprudential stress simulations, In this 
regard, this study is different from previous, traditional stress tests which have often been 
conducted from a microprudential perspective by fund managers for their own purposes. In 
particular, the adopted model includes two key parameters, the flow-performance sensitivity 
(FPS) and the asset price impact ratio. These parameters enable us to capture the so-called 
‘second round effects,’ comprising impacts of additional funding shocks and asset fire sales 
on the funds’ resilience. On the one hand, Markov regime-switching VAR models are used to 
calibrate the regime-dependent FPS. On the other hand, the price impact parameter is 
calibrated as a time-varying parameter based on the Amihud ratio.  

The empirical results suggest that, during the sample period from December 2008 to 
November 2019, bond funds have been most vulnerable, followed by equity funds and mixed 
funds. As of November 2019, the results also suggest a sectoral level vulnerability of 66.7 
bps under the assumption of a shock of -5% to fund returns, meaning that the sector is 
potentially exposed to a liquidation of 0.667% of its aggregate equity if both the stock and 
bond markets declined by 5%. This magnitude of global exposure may suggest that the 
investment fund sector is rather resilient to exogenous shocks and thus it is not likely to raise 
any particular concern for financial stability in Luxembourg.  

However, this conclusion should be interpreted against the background of an elevated risk 
of a reversal in risk premia at the global level. Under such conditions, investors may be 
subject to a sudden increase in their degree of risk aversion, which could potentially increase 
the aggregate vulnerability of investment funds in Luxembourg, especially when such a 
change is combined with higher FPS and stronger price impacts. Therefore, continued 
macroprudential monitoring of the investment fund sector is warranted. 
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Résumé non technique 

Avec un actif net sous gestion s'élevant à plus de 5 billions d'euros en septembre 2019, le 
secteur des fonds d'investissement au Luxembourg constitue désormais une source de 
financement importante pour l'économie réelle. Mais en parallèle, ceci également signifie que 
la probabilité que la vulnérabilité du secteur puisse provoquer des risques systémiques et donc 
menacer la stabilité financière soit désormais plus élevée qu’auparavant. Dans ce contexte, 
les autorités sont à la recherche des cadres d’analyse et outils de surveillance 
macroprudentiels adaptés au secteur des fonds d'investissement. 

Dans ce papier, nous proposons d’évaluer la « vulnérabilité agrégée (VA) » du secteur, une 
mesure de risque systémique, à l’aide des tests de résilience macroprudentiels, opposés à 
des tests traditionnels qui ont souvent été effectués par des fonds d’investissement eux-
mêmes dans une perspective microprudentielle. En particulier, le modèle proposé comprend 
deux paramètres clés, la sensibilité des flux aux performances (SFP) et l’impact sur les prix 
(i.e. ratio du changement de prix au volume de transaction), afin de tenir compte des effets de 
second tour (second round effects). D’une part, nous utilisons des modèles de vecteur 
autorégressif à changement de régime markovien (MS-VAR) pour calibrer le paramètre SFP 
sous l’hypothèse de non-linéarité. D’autre part, nous utilisons le ratio d’Amihud afin de calibrer 
le paramètre d'impact sur les prix comme une série temporelle.  

Les résultats empiriques suggèrent que, pendant la période de décembre 2008 à novembre 
2019, les fonds obligataires ont été les plus vulnérables, suivis par les fonds d'actions et par 
les fonds mixtes. Pour novembre 2019, les résultats suggèrent une vulnérabilité globale du 
secteur de 66,7 points de base sous l'hypothèse d'un choc de -5% sur les rendements des 
fonds, ce qui signifie que le secteur est potentiellement exposé à une liquidation de 0,667% 
de ses fonds propres globaux si les marchés boursiers et obligataires reculaient de 5%. Cette 
ampleur de vulnérabilité globale du secteur peut suggérer que le secteur est plutôt résilient 
aux chocs exogènes et ne devrait donc pas poser de problème particulier pour la stabilité 
financière au Luxembourg. 

En revanche, cette conclusion doit être interprétée dans le contexte actuel où il y a un risque 
élevé de renversement des primes de risque au niveau global. En effet, un tel renversement 
augmenterait la probabilité que les investisseurs changent subitement leur comportement de 
prise de risque, ce qui peut renforcer la vulnérabilité globale des fonds d’investissement, 
notamment lorsqu’un tel changement serait combiné avec une SFP plus élevée et un ratio du 
changement de prix au volume de transaction plus élevé. Par conséquent, une surveillance 
macroprudentielle continue du secteur des fonds d'investissement est justifiée. 

 
 

  



4 
 

 
 
1. Introduction 
The global asset management industry has been rapidly expanding since the financial crisis 
of 2008. This expansion includes Luxembourg, which is the second largest domicile of 
investment funds in the world after the United States. As of September 2019, the net assets 
under management (AuM) of Luxembourg investment funds amounted more than €5 trillion, 
while it was less than €2 trillion a decade earlier. This rapid growth may pose risks to the 
domestic financial sector and implies that assessing the investment fund sector’s resilience is 
an important task for macroprudential authorities. 

This paper assesses the global vulnerability of the Luxembourg investment fund sector. 
To this end, we implement an empirical framework for macroprudential stress testing 
simulations, as opposed to traditional stress tests that have often been conducted from a 
microprudential perspective by fund managers for their own purposes. According to the 
ESRB (2018), microprudential stress tests usually consider fund-specific features (e.g. a 
fund’s current investor concentration, redemption policies, and investors’ profile and 
behaviour), and rely on assumptions on redemption levels under stress. Some advanced 
microprudential frameworks also take into consideration diverse risks of each individual fund. 
For instance, liquidity risk is either directly calculated using historical data on average daily 
trading volumes (e.g. for stocks) or inferred from other factors such as the total amount 
outstanding, credit rating, and percentage of issue held (e.g. for bonds). Market risk is often 
simulated by a widening of spreads, yield curve movements, and stock price shocks. Credit 
risk is modelled with a default and/or rating downgrade of the largest issuers in the fund, 
while counterparty risk is simulated by costs arising from fire sales or potential collateral 
calls. 

Meanwhile, these traditional designs can also be transposed in a macroprudential 
approach when aiming to address, for instance, the question of whether the fund sector as a 
whole may remain resilient to adverse redemption shocks. One possible way to do so is to 
use aggregate variables at the sector level. Such an approach is used in some recent 
studies, including those by the IMF (2017), Fricke and Fricke (2017), Baranova et al. (2017), 
and ESRB (2018).  

The IMF (2017) reports results of a macroprudential stress test on Luxembourg-domiciled 
investment funds, performed as part of their Luxembourg Financial Sector Assessment 
Program (FSAP). It first measures the redemption coverage ratio at the fund category level 
(i.e. aggregate ratio of liquid assets to net outflows) under the assumption that a large cash 
outflow can be triggered by redemption shocks. These ratios then serve to identify fund 
categories that may be the most vulnerable under adverse market conditions. In this 
framework, its uses two distinct measures of liquid assets (‘Cash and short-term debt only’ 
and ‘High Quality Liquid Assets’), and calibrates redemption shocks either using an ‘historical 
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approach’ or a ‘forward looking approach’.1 It concludes that most fixed income funds in 
Luxembourg are resilient to adverse redemption shocks, whereas high yield bond funds are 
vulnerable but to a more limited extent.  

The ESRB (2018) performed a macroprudential stress simulation for the European 
investment fund sector. To identify investment fund categories vulnerable to significant 
redemption shocks, it assumes: (i) a benchmark redemption shock (a net weekly average 
outflow of 5% of AuM); (ii) a combination of pro-rata (80%) and waterfall (20%) selling 
strategies; (iii) redemption suspensions by supervisory authorities depending on the drop in 
fund performance (20%, 40%, 60%); and (iv) a linearity in the price response function to the 
volume of asset sales. It concludes that government bonds, investment grade covered bonds 
and equity markets would be resilient even under the most extreme cases, whereas 
corporate bonds and securitization markets would not be resilient, even under a milder 
scenario with a 5% redemption shock.  

While the IMF and ESRB frameworks provide some first insights into the macroprudential 
design of stress tests for the investment fund sector, further improvements can be made. 
Indeed, the ESRB (2018) acknowledges that their framework does not take into account the 
so-called ‘second-round effects’ which may have stronger implications for financial stability 
than ‘one-shot’ impacts of initial shocks. For instance, Manconi et al. (2012) show that 
massive redemptions by investors in the bond market may trigger portfolio rebalancing at 
discounted prices by fund managers, and subsequently trigger a broader contagion to other 
markets.  

Meanwhile, any successful framework designed to assess second-round effects needs to 
include a panel of underlying macroeconomic and financial variables related to asset fire 
sales, market liquidity and prices, investors’ behaviour, redemption decisions, fund flows and 
performance. This need has also been underlined in the literature related to investment 
funds. For instance, Cetorelli et al. (2016) pointed out that large-scale redemptions from US 
open-ended investment funds are originally triggered by exogenous macrofinancial shocks, 
such as an increase in market interest rates, by passing through significant changes in 
assets prices. Cenedese and Mallucci (2016) also reported that equity fund outflows are 
essentially triggered by macrofinancial shocks (such as negative discount rate shocks), while 
inflows and outflows to/from bond funds in emerging markets are often determined by US 
interest rate shocks.  

Fricke and Fricke (2017) propose a comprehensive framework for macroprudential stress 
testing which aims to address second-round effects when measuring investment funds’ 
‘aggregate vulnerability’ – an indicator of systemic risk proposed by Greenwood et al. 
(2015).2 In fact, Greenwood et al. (2015) suggested including a ‘price impact’ parameter in 
the stress test model in order to address the effects of fire sales by banks. Fricke and Fricke 

 
1 Redemption shocks are calibrated at the 1% highest monthly outflows in the ‘historical approach’, whereas they 
are estimated using a regression of monthly net flows on macro-financial variables in the ‘forward looking 
approach’. 
2 ‘Aggregate vulnerability’ is empirically measured differently from, but conceptually similar to, the ‘CoVaR’ (Adrian 
and Brunnermeier, 2016) or the ‘SRISK’ (Acharya et al., 2017). See Section 2 for more detail on its definition. 
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(2017) apply the model to investment funds while adding another key parameter, ‘flow-
performance sensitivity (FPS)’.  

The proposal of Fricke and Fricke (2017) contributes to the literature in that it is, to the 
best of our knowledge, the first macroprudential stress testing model that addresses second-
round effects in the investment fund sector. Still, some methodological improvement can be 
made to better reflect the interactions between investors, funds and markets. For instance, 
Fricke and Fricke (2017) assume linearity in FPS, but many studies report that FPS is non-
linear, time-varying or time-dependent.3 In line with this literature, the linearity assumption is 
relaxed in this paper to allow for the conditional forms of the FPS. More specifically, we 
implement Markov regime-switching vector autoregressive (MS-VAR) models to consider the 
regime-dependent form of FPS (see Sections 3.1 and 4.2). As for the parameter of price 
impact for stocks and bonds, we consider the time-varying form using the Amihud ratio, as 
opposed to Greenwood et al. (2015) and Fricke and Fricke (2017) who consider a constant 
and common price impact ratio for all assets.  

This paper focuses on three major fund categories (i.e. equity funds or ‘EQF’, bond funds 
or ‘BOF’, and mixed funds or ‘MXF’), which cover around 80% of the Luxembourg investment 
fund sector’s total AuM. The use of these three categories is motivated by lack of data for 
other funds, such as real estate funds and hedge funds.4 Basic features of EQF, BOF and 
MXF are depicted in figures provided in the Appendix for the sample period from December 
2008 and September 2019: assets under management (Figure A); relative weights in total 
AuM of all open-ended funds in Luxembourg (Figure B); leverage ratio defined as debt over 
capital5 (Figure C); and the weights of stocks and bonds in portfolio of MXF (Figure D).  

The remainder of this paper is structured as follows. Section 2 describes the 
macroprudential stress testing model designed for investment funds. Section 3 introduces 
our methodology for parameter calibration. Sections 4 and 5 describe data and report the 
empirical estimates of FPS and price impacts. Section 6 reports and discusses the main 
findings in terms of the aggregate vulnerability of the funds and the sector as a whole. 
Section 7 concludes.  
 
 
2. The model  
Following Fricke and Fricke (2017), the adopted model accounts for ‘additional funding 
shocks’ and ‘fire-sales effects’, triggered by an initial shock to investment funds’ returns (e.g. 
a 5% or 10% decrease of net asset value). Considering three time periods (t, t+1, t+2), we 
assume the following. First, an initial shock (see Equations [1] to [4] below) arises at time t, 

 
3 For more detail on the literature related to the flow-performance relationship, see Section 3. 
4 The lack of data here refers to the non-availability of daily data on trading volumes and price changes of certain 
types of assets, such as real estate and derivatives. 
5 The data on these variables come from Table S1.13 provided by the BCL. ‘Capital’ corresponds to the item 
‘Shares/units issued’. ‘Debt’ corresponds to the sum of ‘Borrowings’ and ‘Debt securities issued’. The item 
‘Borrowings’ includes ‘Overnight borrowings’, ‘Borrowings with agreed maturity’, ‘Redeemable at notice’, 
‘Repurchase agreements’, and ‘Short sales of securities’.  
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meaning that all ‘pre-shock’ variables have a time index t-1. Second, fund group i is financed 
with a mix of debt Di and equity Ei, and their total assets at time t (i.e. Ai,t) corresponds to the 
sum of Ei,t and Di,t. Third, Bi,t refers to fund group i’s leverage ratio (i.e. Bi,t = Di,t/Ei,t)6. Finally, 
fund group i holds K assets in its portfolio at time t.  
 
 
2.1. Initial shock at time t 
Let πt denote a K×1 vector of net returns on K assets held in the portfolio of a given fund 
group at time t. Let Mt denote a K×1 vector of K assets’ respective weights in the portfolio at 
time t. Then, the unlevered return of the fund group at time t, Rt, can be defined as follows: 
 

𝑅! = 𝑀!
"𝜋!           [1] 

 
This equation implies that a shock to πt is also a shock to Rt, and that the size of Rt is 
determined by both πt and Mt. For instance, if we assume a negative shock of -5% to all 
terms in Ft, it gives Rt = -5%. In other words, if we assume a ‘common’ initial shock of -5% to 
all assets held in the fund group’s portfolio, it immediately decreases the total value of the 
portfolio by 5%. The immediate consequences of this shock at time t can be expressed in 
terms of the fund’s total assets, equity and debt, as follows: 
 

𝐴! = 𝐴!#$(1 + 𝑅!)          [2] 
𝐸! = 𝐸!#$ + 𝐴!#$𝑅!          [3] 
𝐷! = 𝐷!#$           [4] 

 
where the time index t-1 refers to the ‘pre-shock’ period. 
 
 
2.2. Additional funding shock at time t+1 captured by FPS 
In order to reflect investors’ behaviour in response to funds’ performance, we include in the 
model the flow-performance sensitivity (FPS) parameter γ.7 In addition, as investment funds’ 
equity and debt may have different FPS values, we distinguish between γE (FPS for equity) 
and γD (FPS for debt). Then, the ‘additional adjustments on the liability side of the balance 
sheet’ or the ‘additional funding shock’ at time t+1 can be expressed as follows:  
 

𝛥𝐸!%$ = 𝛾&𝑅!𝐸!          [5] 
∆𝐷!%$ = 𝛾'𝑅!𝐷! = 𝛾'𝑅!𝐷!#$         [6] 

 
From [5] and [6], we obtain 𝐸!%$ = 𝛾&𝑅!𝐸! + 𝐸!   

 
6 This definition also gives 𝐸!,#$% = 𝐴!,#$% $1 + 𝐵!,#$%(⁄  and 𝐷!,#$% = 𝐵!,#$%𝐴!,#$% $1 + 𝐵!,#$%(⁄ . 
7 Fricke and Fricke (2017) include this parameter (as a fixed value) in their model, as distinguished from 
Greenwood et al. (2015). 
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𝐸!%$ = 𝐸!(1 + 𝛾&𝑅!)          [7] 
𝐷!%$ = 𝐷!(1 + 𝛾'𝑅!) = 𝐷!#$(1 + 𝛾'𝑅!)       [8] 
𝐴!%$ = 𝐴! + ∆𝐸!%$ + ∆𝐷!%$         [9] 

 
[9] can be then written as 
 

𝐴!%$ = 𝐴!#$ /1 + 𝑅! 01 + 𝛾& 1𝑅! +
$

$%(
2 + 𝛾' (

$%(
34     [10] 

 
which is equivalent to 
 

(𝐴!%$ − 𝐴!#$) 𝐴!#$⁄ = 𝑅! 01 + 𝛾& 1𝑅! +
$

$%(
2 + 𝛾' (

$%(
3     [11] 

 
Let 𝑅7!%$ refer to the term on the left side of [11], i.e. (𝐴!%$ − 𝐴!#$) 𝐴!#$⁄ ≡ 𝑅7!%$. As this term 
reflects all impacts from both the initial shock at time t and additional funding shocks at time 
t+1, it can be called the ‘adjusted portfolio return at time t+1’. Now, we assume that γD=0, 
meaning that there is no withdrawal of debt in response to the initial shock.8 Then, [11] is 
reduced to  
 

𝑅7!%$ = 𝑅! 01 + 𝛾& 1𝑅! +
$

$%(
23        [12] 

 
Given the initial shock, [12] shows that adjusted portfolio return at time t+1 is determined only 
by FPS for equity γE and the leverage ratio B. In other words, ceteris paribus, the impact of 
additional funding shocks on portfolio return at time t+1 will be stronger when FPS is higher 
and when the leverage ratio is lower. This means that the impact of additional funding shocks 
will be amplified by a high FPS but mitigated by a high leverage ratio. 
 
 
2.3. Second round effects at time t+2 captured by the price impact ratio 
Facing initial and additional funding shocks, investment funds could adjust their portfolios by 
selling (or buying) assets. This adjustment can be expressed in terms of the total amount of 
assets to be liquidated, which corresponds to the sum of variations of equity and debt at time 
t+1 and reflecting a withdrawal of short term funding after negative shocks. However, funds 
also target their leverage and thus attempt to hold their portfolio weights stable when 

 
8 Indeed, the relevance of including γD is limited in the sense that changes in funding by debt are generally not 
significant in the case of investment funds, mainly due to the tight leverage constraints imposed on them. Fricke 
and Fricke (2017) also confirm that there is no evidence of a significant flow-performance relationship with regard 
to debt financing for mutual funds. 
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adjusting their portfolios.9 This implies that a leverage targeting term should be added into 
the total amount of assets to be liquidated. In this context, the leverage targeting term can be 
expressed as 𝐴!#$𝐵𝑅7!%$.10 Using [5] and [6] and assuming that γD=0, the total amount of 
assets to be liquidated (𝜙7) 11 after negative shocks can be expressed as follows: 
 

𝜙7!%$ = 𝛾&𝐸!𝑅! + 𝐴!#$𝐵𝑅7!%$         [13] 
 
Furthermore, this liquidation of assets (or fire sales) is likely to generate the so-called ‘price 
impact’.12 Combined with the amount of assets to be liquidated, the price impact is then 
expected to determine a fund’s return at time t+2 (i.e. 𝑅7!%)) as follows: 
 

𝑅7!%) = 𝐿𝜙7!%$           [14] 
 
where L refers to the price impact ratio expressed in units of returns per euro of net sales.  
 
2.4. Aggregate vulnerability 
Using [14], the model finally defines an indicator of ‘aggregate vulnerability’ (AV, hereafter) of 
all funds within a given fund group in such a way that the indicator reflects total effects of the 
negative sequence relating the initial shocks (at time t) to asset fire sales (at time t+2). In line 
with Greenwood et al. (2015) and Fricke and Fricke (2017), AV is defined as follows:  
 

𝐴𝑉!%) = −=𝐴!#$𝑅7!%)> 𝐸!#$⁄         [15] 
 
This indicator measures the percentage of aggregate equity of all funds that would be wiped 
out by their assets liquidation (or fire sales) following initial shocks.  

Finally, it is worth noting that, according to [13], [14] and [15], the amplitude of AV might 
mainly depend on the two parameters, γ and L, implying that their calibration would have 
important implications for the results of the model. Against this background, we attempt to 
best calibrate these parameters using MS-VAR models and the Amihud ratio (for γ and L, 
respectively).  
  

 
9 In general, investment funds need to specify the composition of both their asset and liability sides in their sales 
prospectuses. Consequently, they are unlikely to deviate significantly from their proposed targets. For instance, 
Jiang et al. (2017) report that mutual funds tend to sell assets according to their liquidity pecking order during 
normal times, but on a pro-rata basis during times of market stress. 
10 See Greenwood et al. (2015) for more detail on the leverage targeting term by a bank (p.473; Assumptions 1 
and 2). 
11 Under the ‘usual’ assumption of a positive γ, the amount 𝝓,	would be positive. However, if γ is negative 
(because investors have other prevailing criteria than past performance, for instance), it is possible that 𝝓,  could 
be negative. In such cases, the absolute value of 𝝓,  will be used in equation [14] in order to capture the impact of 
γ on the determination of final AV as calculated in equation [15].  
12 See Section 3.2 for more detail on the concept of price impact. 
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3. Methodology for parameter calibration 
 
3.1. Flow-performance sensitivity (FPS) 
Fricke and Fricke (2017) assume a positive linearity in FPS (in line with Berk and Green 
(2004), Chen et al. (2010) and Cetorelli et al. (2016), for instance). This suggests that bad 
performance is followed by net outflow, whereas good performance is followed by net inflow. 
This assumption also implies that good and bad performance is treated symmetrically.  

However, non-linearity or asymmetry in FPS is also reported in the literature. Ippolito 
(1992) examines the case of US mutual funds for the period between 1966 and 1984. More 
specifically, this paper investigate whether mutual fund investors actively react to funds’ 
performance. He confirms that funds’ net inflows are positively correlated to their 
performance. However, he also reports that investors react disproportionately when the 
expected payoffs are higher, pointing out to the existence of an asymmetry in the flow-
performance relationship. According to Ippolito, this asymmetry is mainly due to high 
investment costs, in particular, opening and closing costs, which makes investors reluctant to 
move their assets from underperforming to outperforming funds unless there is 
disproportionate evidence of bad performance.  

Asymmetry in FPS is more formally demonstrated in subsequent studies. Chevalier and 
Ellison (1997) find that FPS in US equity funds has a convex shape, showing that inflows 
increase sharply for best performing funds, whereas outflows do not increase for worst 
performing funds. Sirri and Tufano (1998) also find that US equity fund investors move more 
quickly and massively into outperforming funds than when they redeem from 
underperforming ones. Many other studies also confirm convexity in FPS, including Brown et 
al. (1996), Barber et al. (2005), Lynch and Musto (2003), Huang et al. (2007), Bellando and 
Tran-Dieu (2011)13, and Goldstein et al. (2017).  

In sum, these studies confirmed a form of non-linearity in FPS. This implies that the 
empirical results of any analyses based on the linearity assumption can be biased. To 
address such a possible bias, this paper attempts to consider a non-linear form of the FPS 
parameter. In particular, a conditional or regime-dependent form of FPS is considered in this 
paper. That is, we do not impose any restrictions on the sign or amplitude of FPS. For 
instance, a significantly negative estimate of FPS would reject the standard assumption of 
‘past performance chasing’ strategy of fund investors. Such results would suggest that 
investors may have other prevailing criteria than (past) performance, such as diversification. 
To address this question, we implement Markov regime switching vector autoregressive 
models (MS-VAR) to estimate the flow-performance model. 

Among a number of MS-VAR model specifications, two models are in particular tested 
and estimated: (i) specification C, where the constant term (μ) and coefficients (γ and β) are 
regime-dependent, while the error term (ε) is not regime-dependent; and (ii) specification CH, 
where μ, γ, β and ε are all regime-dependent. Equations [16] and [17] below correspond to 
the equation of net inflow ratio to TNA in the ‘C’ and ‘CH’ specifications, respectively.  

 
13 Bellando and Tran-Dieu (2011) consider French equity mutual funds, rather than US equity funds. 
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C: 𝐹*,! = 𝜇, +∑ 𝛾-,,𝑅*,!#-.

-/$ + ∑ 𝛽-,,𝐹*,!#-.
-/$ + 𝜀*,!     [16] 

CH: 𝐹*,! = 𝜇, +∑ 𝛾-,,𝑅*,!#-.
-/$ + ∑ 𝛽-,,𝐹*,!#-.

-/$ + 𝜀,,*,!     [17] 
 
where: Ri,t refers to fund category i's return at time t; Fi,t is net inflows into fund category i at 
time t, divided by its total net assets (TNA) at time t-1, meaning that Fi,t is expressed in terms 
of a percentage of TNAi,t-1; the subscript s refers to the ‘regime’ or ‘state’ with 𝑠 ∈ {1,2}; 𝜺𝒊,𝒕 
and 𝜺𝒔,𝒊,𝒕 are normally distributed error terms with 𝜀*~𝑁(0, 𝜎)) and 𝜀3,*~𝑁=0, 𝜎3&

)>, respectively. 
Note that, in these equations, γ1,S (i.e., the regime-dependent coefficient of R1) represents 
the parameter of interest (i.e. FPS).  

These equations are estimated using the so-called expectation-maximization (EM) 
algorithm.14 In parallel with the estimation of the regime-dependent models, two specification 
tests are implemented to select the best-performing model for each fund category. First, the 
AIC/SBC are calculated to select the optimum number of lags for a given number of regimes. 
Second, the regime classification measure (RCM) of Ang and Bekaert (2002) is implemented 
to select the optimum number of regimes for a given number of lags. RCM is normalised 
between 0 and 100. If RCM = 0, the model perfectly discriminates between two regimes. If 
RCM = 100, the model simply assigns each regime a 0.5 chance of occurrence throughout 
the sample. Finally, if these specification tests lead to more than two competing models for a 
given fund category, the final selection is based on the parsimony principle so that the 
ultimately selected model corresponds to the one with the least number of parameters whose 
inclusion significantly improves the overall estimation performance.  
 
 
3.2. Price impacts 
The concept of price impact for an asset can be measured using the Amihud ratio (Amihud, 
2002). Put simply, the Amihud ratio for asset k on day y is defined as the daily absolute 
return on asset k divided by its total trading volume (expressed in currency units) on day y. 
Then, the monthly price impact ratio L is defined as the monthly average of the daily Amihud 
ratios for a given month.  

Greenwood et al. (2015) assumed that all asset types examined in their analysis15 have 
the same price impact coefficient (i.e. L=10-13) suggesting that €1 billion of trading volume 
leads to a price change of 10 basis points (bps). They argued that this magnitude is 
comparable to empirical estimates of price impact in bond markets reported in the literature, 
including Ellul et al. (2011) and Feldhutter (2012) to name just a few.16 However, Greenwood 

 
14 The EM algorithm consists of maximizing the ‘updated’ log likelihood function of the regime-dependent 
distribution of Fi,t (i.e. 𝐿! = ∑ 𝑙𝑛2∑ 𝑓$𝐹!,#5𝑠#, 𝐹!,#$%(𝑃𝑟$𝑠#5𝐹!,#$%, … , 𝐹!,%('

()% ;*
#)% , where T is the number of observations 

in the data set for fund category i). 
15 They consider 42 asset types, including stocks and bonds; see Greenwood et al. (2015), p. 477. 
16 Ellul et al. (2011) study fire sales of corporate bonds by insurance companies, while Feldhutter (2012) 
examines selling pressure by comparing small and large trades of corporate bonds. 
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et al. (2015) acknowledged that their estimate of price impact could be an underestimate for 
less liquid asset classes (such as whole loans).  

Fricke and Fricke (2017) also used a constant value of 4.77×10-6 for all funds examined in 
their main analysis. According to them, 4.77×10-6 is a typical value of the equal-weighted 
average price impact for investment funds. To justify their choice, they provided empirical 
evidence that diverse estimates of L under different specifications17 lead to similar levels of 
final aggregate vulnerability for the US investment fund sector.  

Further, Greenwood et al. (2015) and Fricke and Fricke (2017) assumed a constant and 
common price impact ratio for all asset types in their main analyses. However, in this paper, 
we assume that price impacts for stocks differ from those for bonds. In addition, we also 
assume that price impacts can be time-varying, time-period dependent and/or currency-
dependent. These two assumptions allow us to calibrate the price impact parameter L for 
each type of asset (i.e., stocks and bonds) held by EQF, BOF and MXF. Section 5 provides a 
detailed description of our approaches to calibrating the price impact parameter for stocks 
(LS) and bonds (LB).  

 
 

4. Monthly data and estimates of FPS 
 
4.1. Data on fund return and net inflow  
To calibrate the FPS parameter γ, we first retrieved monthly data on net asset value per 
share (NAVPS), net inflow (NETINF) and total net asset value (TNA) for 2953 funds 
domiciled in Luxembourg for the period from December 2008 to September 2019. These 
data come from the Commission de Surveillance du Secteur Financier (CSSF)’s Table 
O1.1.18 Using these data, we created two time series for each of the 2953 funds considered:  
 

(i) ‘R’, a series of fund returns, defined as the monthly log difference of NAVPS;  
 
(ii) ‘F’, a series of net inflow ratios, defined as NETINF at time t divided by TNA at 
time t-1.  

 
In parallel, 2953 funds were classified into three categories (EQF, BOF and MXF) based on 
the Banque Centrale du Luxembourg (BCL)’s fund classification: (i) EQF comprising 1310 
equity funds; (ii) BOF comprising 763 bond funds; and (iii) MXF comprising 880 mixed funds. 
This classification allowed us to create one aggregate series (as a simple average) for each 

 
17 Including specifications with (i) a constant and common value of L for all investment funds examined; (ii) 
constant but fund-specific values of L; (iii) time-varying and fund-specific values of L. 
18 More specifically, NAVPS corresponds to ‘Net asset value per unit or share’ (Line 120), and TNA to ‘Total net 
asset value’ (Line 110). NETINF corresponds to ‘Net units or shares issued (or redeemed)’ (Line 330), which 
refers to the difference between ‘Net proceeds from units or shares newly issued’ (Line 310) and ‘Payments made 
in settlement of redemptions’ (Line 320). More detail on the definition of these data/variables can be found in 
Circular IML 97/136 as amended by Circular CSSF 08/348 (available on the CSSF website). 
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of the two variables (i.e. R and F) and for each of the three categories of fund. The resulting 
series are depicted in Figure 1, and their descriptive statistics are provided in Table 1. On 
average during the sample period, EQF performed best with an average monthly return of 
0.379%, followed by BOF (0.177%) and MXF (0.159%). The highest volatility in performance 
was shown by MXF, followed by EQF and BOF. In parallel, the highest average net inflow 
ratio to TNA was shown by MXF (0.581%), followed by BOF (0.428%) and EQF (0.270%). 
This suggests that compared to its relative size, MXF grew most steadily and rapidly during 
the sample period.  
 
 
4.2. Estimates of the FPS parameter γ  
Table A in the Appendix reports results of the MS-VAR model specification tests (i.e. 
AIC/SBC and RCM). Based on these results, specification ‘C’ with two regimes and two lags 
is selected for EQF, while specification ‘CH’ with two regimes and three lags is selected for 
BOF and MXF. Table 2 reports the estimation results of these models. Note that most of 
‘MS1’ and ‘MS2’ estimates of FPS (i.e. γ1(s=1) and γ1(s=2) in the F column) are significant, 
which seems to confirm the regime-dependent conditionality in FPS for examined fund 
categories.  

Commonly for the three fund categories, the constant term (μs) for R is positive and 
significant (at 1%) in both regimes. Meanwhile, μs for F in regime 1 is positive and significant 
only for BOF and MXF, while that in regime 2 is negative and significant only for EQF and 
BOF. These common features indicate that transitions between two regimes took place 
depending rather on the sign of the average value of F than that of the average value of R.  
 

Figure 1. Aggregate fund return and net inflow ratio to TNA 

 
Notes. In each panel, the black line depicts the series of aggregate fund return (R; lhs), defined as monthly log 
difference of net asset value per share (NAVPS). The blue line plots the series of net inflow ratio to total net 
assets (F; rhs). These series are expressed in percentage points. EQF = equity funds; BOF = bond funds; MXF = 
mixed funds. The sample period goes from December 2008 to September 2019.  
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Table 1. Descriptive statistics of aggregate fund return and net inflow ratio to TNA 
Fund category EQF BOF MXF 

Variables R F R F R F 
Obs. 130 130 130 130 130 130 
Mean 3.79E-01 2.70E-01 1.77E-01 4.28E-01 1.59E-01 5.81E-01 

Variance 1.83E-04 1.40E-02 1.39E-04 1.04E-02 2.69E-04 1.70E-02 
Skewness -2.23E+01 5.16E+01 3.32E+01 5.93E+01 -1.67E+02 1.32E+02 
Kurtosis 3.30E+01 2.14E+01 -1.73E+01 2.38E+01 1.10E+03 3.18E+02 

J.-B. stat. 1.67E+02 6.01E+02 2.55E+02 7.92E+02 7.18E+04 9.27E+03 
p-value (J.-B.) 4.34E+01 4.96E+00 2.79E+01 1.91E+00 1.29E-154 7.33E-19 

Minimum -1.69E-03 -2.80E+00 -8.87E-02 -1.45E+00 -6.93E-01 -2.37E+00 
Maximum 7.21E-01 3.20E+00 4.51E-01 3.86E+00 8.25E-01 6.50E+00 

Notes. R refers to aggregate fund return defined as monthly log difference of net asset value per share (NAVPS). 
F refers to aggregate net inflow ratio to total net assets (TNA). R and F are expressed in percentage points. EQF 
= equity funds; BOF = bond funds; MXF = mixed funds. The sample period goes from December 2008 to 
September 2019.  

 
 
4.2.1. Estimates of γ for EQF 
The estimation results in column ‘F’ for EQF in Table 2 show a significantly negative estimate 
of γ in regime 1 (γs=1=-0.0404), and a significantly positive estimate of γ in regime 2 
(γs=2=0.0523). On the one hand, these significant estimates (with the opposite sign to each 
other) confirm the regime-dependent conditionality of the FPS parameter. On the other hand, 
these results indicate that the ‘past performance chasing’ strategy of investors is confirmed in 
regime 2, but other criteria than performance prevail in regime 1.  
 
4.2.2. Estimates of γ for BOF 
Column ‘F’ for BOF in Table 2 reports similar results to those for EQF: the estimate of γ is 
significantly positive in regime 1 (i.e. γs=1=0.0382), while it is significantly negative in regime 2 
(γs=2=-0.0641). These estimates also confirm the regime-dependent conditionality of FPS for 
BOF, suggesting that BOF investors continue to chase past performance in regime 1, but not 
in regime 2.  
 
4.2.3. Estimates of γ for MXF 
Column ‘F’ for MXF in Table 2 shows that the estimate of γ is positive but not significant in 
regime 1, while it is significantly negative in regime 2 (γs=2=-0.0327). Hence, there is no 
evidence of a positive FPS for MXF, in contrast to the cases of EQF and BOF. On the 
contrary, investors seem to have other criteria than past performance when deciding whether 
to invest into or redeem from MXF.  
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Table 2. Flow-performance relationship estimated by MS-VAR models 

Fund category EQF BOF MXF 
Dep. variable R F R F R F 

μ(s=1) 0.4218*** 0.1067 0.1445*** 0.8512*** 0.1530*** 0.1156** 
μ(s=2) 0.4131*** -1.0990*** 0.1230*** -0.5024*** 0.2122*** -0.1078 
γ1(s=1) 0.0087 -0.0404** 0.1652** 0.0382*** -0.0639 0.0102 
β1(s=1) -0.2859 0.4955*** 0.5682 0.3074*** -0.3012 0.4820*** 
γ1(s=2) -0.0143 0.0523*** -0.1389 -0.0641*** 0.2084** -0.0327* 
β1(s=2) 0.8332 0.8166*** 1.4067*** 0.5608*** 1.4668** 0.1688 
γ2(s=1) -0.2604*** 0.0649*** -0.0299 0.0250*** -0.1196 -0.0062 
β2(s=1) 0.151 0.4813*** -3.0521*** 0.4579*** -0.4559** 0.1282** 
γ2(s=2) 0.0754 -0.0430* 0.3638*** 0.0148 0.041 -0.0376 
β2(s=2) 1.8232*** -0.3441* 0.6148** 0.1444** -0.3724 0.9209*** 
γ3(s=1) - - -0.0679 -0.0429*** -0.0583 0.0274* 
β3(s=1) - - -1.5130** 0.0205 -0.4306** 0.2110*** 
γ3(s=2) - - 0.1224 0.0482*** -0.2326** 0.0515** 
β3(s=2) - - -0.0103 0.3574*** -0.7736 0.1259 

σ 0.0120*** 0.3342*** - - - - 
σ(s=1) - - 0.0032*** 0.4380*** 0.0285*** 0.1107*** 
σ(s=2) - - 0.0173*** 0.1144*** 0.0153*** 0.3946*** 

σR-F 0.0018 - - 
σR-F(s=1) - -0.0119*** 0.0045 
σR-F(s=2) - 0.0077 0.0192 

P(1,1) 0.4084* 0.7028*** 0.9273*** 
P(1,2) 0.8868*** 0.3241*** 0.1208* 

Notes. Specification ‘C’ with two regimes and two lags was selected for EQF, while specification ‘CH’ with two 
regimes and three lags was selected for BOF and MXF. This table reports estimation results of these models 
with two variables (R and F in percentage points). In the cases of EQF and BOF, ‘s=1’ refers to ‘regime 1’ 
corresponding to times of better performance combined with net inflow, while ‘s=2’ refers to ‘regime 2’ 
corresponding to times of worse performance combined with net outflow. In the case of MXF, ‘s=1’ or ‘regime 1’ 
corresponds to times of worse performance combined with net inflow, while ‘s=2’ or ‘regime 2’ corresponds to 
times of better performance combined with net outflow. P(1,2) reflects the estimated probability of transition 
from regime 2 to regime 1. P(1,1) refers to the estimated probability of no transition from regime 1. ***, **, and * 
refer to the 1%, 5%, and 10% significance levels, respectively. 
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5. Daily data and monthly estimates of price impact L 
To estimate the price impact ratio for stocks and bonds held by the three fund categories, 
daily data on changes in price and daily trading volume of stocks were retrieved from the 
ECB’s Statistical Data Warehouse (SDW).  
 
5.1. Price impact ratio for stocks LS  
Daily data on the historical closing price and trading volume for 24 stock indexes were 
retrieved from the SDW for the period from December 1st, 2008 to September 30th, 2019.19 
For a given index, a series of daily Amihud ratios was first calculated (see Section 3.2), 
which served to create a series of monthly price impact ratios defined as the Amihud ratios’ 
monthly average. Repeating this process for each of the 24 indexes allowed us to create 24 
series of monthly price impact ratios 𝑳𝒊𝑺 (with i = 1,…,24).  

These series were then used to create three aggregate series of price impact for stocks 
LS by currency under the assumption that price impacts may differ depending on the 
currency in which stocks are denominated. Note that series denominated in currencies other 
than the euro were first adjusted20 with the spot exchange rates against the euro so that price 
impacts for all stocks can be expressed in terms of euro.21 They were then classified into 
three groups: (i) a ‘EUR’ group comprising 14 indexes (AEX Amsterdam; ASE Athens; ATX 
Vienna; BEL20; CAC40; DAX; EuroStoxx50; Euronext100; FTSE MIB; IBEX35; ISEQ Irish; 
LuxX Luxembourg; OMX Helsinki; PSI20 Lisbon); (ii) a ‘USD’ group comprising 4 indexes 
(DJ Composite; DJ Industrial Average; DJ US Banks; NASDAQ); and (iii) a ‘ROW’ group 
comprising 6 indexes (S&P Toronto; SMI Swiss; FTSE250; HSI Hong Kong; Nikkei225; 
KOSPI Korea). An aggregate series was created for each of the groups, i.e. LS,EUR, LS,USD 
and LS,ROW, representing the price impact for stocks denominated in euro, dollar and other 
currencies, respectively. Figure 2 depicts these series. For instance, the sample mean of the 
series of LS,EUR is 0.35%, meaning that a sale of stocks equivalent to €1 million induced a 
price decrease by 0.35% on average during the sample period.  
 

5.2. Currency weights in stock portfolios 
Monthly currency weights in the stock portfolios of EQF and MXF were calculated using 
granular data on the historical breakdown of each fund category’s holdings of stocks by 
currency (i.e. ‘EUR’, ‘USD’ and ‘ROW’) covering stocks from 135 countries. Figure 3 plots the 

 
19 Table B in the Appendix provides the list of these indexes. 
20 This means that the price impacts are multiplied by the exchange rates expressing the values of one euro in 
terms of the units of other currencies. 
21 The data on the exchange rates against the euro come from the ECB’s Statistical Data Warehouse (SDW). 
Specifically, the following spot exchange rates are used: EUR/CAD, EUR/CHF, EUR/GBP, EUR/HKD, EUR/JPY, 
EUR/KRW and EUR/USD. 
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resulting series (WS,EUR, WS,USD and WS,ROW) for EQF and MXF, respectively. One interesting 
point is that EQF seem to prefer stocks in ROW, while MXF prefers stocks in EUR.  
 
 

Figure 2. Price impacts for stocks by currency 
 

 
Notes. This figure plots the series of price impact ratio for stocks (EUR = LS,EUR; USD = LS,USD; ROW = LS,ROW), 
multiplied by 1000000, meaning that the depicted values refer to the price change ratios to a sale of stocks 
equivalent to €1 million. The sample period goes from December 2008 to September 2019. 

 
 

Figure 3. Currency weights in stocks holding by EQF and MXF 

 
Notes. This figure depicts the relative weights of three currencies (EUR, USD and ROW) in the aggregate 
portfolios of stocks of EQF and MXF. The sample covers the period from December 2008 to September 2019.  
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5.3. Price impact for bonds LB 
Regarding bonds, no daily data on price change and trading volume were available. As a 
result, the price impact parameter for bonds (LB) could not be calibrated. Consequently, 
some reference values proposed in the literature were considered as potential proxies for the 
price impact ratio for bonds. For instance, Ellul et al. (2011) reported that the price impact of 
insurance companies’ selling of downgraded bonds ranged between 2.5×10-9 and 3.5×10-8 
for the period from 2001Q1 to 2005Q3. More recently, Langedijk et al. (2018) used high-
frequency data on sovereign bonds from four euro member countries (Germany, Finland, 
Italy and Portugal) for the period from 2011:01:01 to 2012:12:31 to estimate time series of 
price impacts for sovereign bonds based on a mix of large and small markets with higher and 
lower credit quality. This time series could be an interesting proxy, but the time span is too 
short (2011-2012) to be relevant for our analysis.  

Another interesting proposal comes from Bao et al. (2018). They proposed a series of 
time-period-dependent price impacts for downgraded bonds (from ‘investment grade’ to 
‘speculative grade’) over the period from 2006:01:01 to 2016:03:31. In fact, they divided the 
sample period into five sub-periods: (i) Pre-crisis Period (2006:01:01 to 2007:06:30); (ii) 
Crisis Period (2007:07:01-2009:04:30); (iii) Post-crisis Period (2009:05:01-2010:07:20); (iv) 
Post-Dodd–Frank Period (2010:07:21-2014:03:31); and (v) Post-Volcker Period (2014:04:01-
2016:03:31). For each of these sub-periods, a constant value of price impact is estimated: (i) 
0.7×10-8; (ii) 3×10-8; (iii) 2.1×10-8; (iv) 1.5×10-8; and (v) 2.4×10-8. 

Among these references, the Bao et al. proposal seems to be the most relevant for our 
analysis for two reasons. First, the proposed price impact for bonds is a time-period 
dependent series. Second, the period considered in Bao et al. (2018) corresponds the best 
to our sample period among the proposals. However, as the sub-sample periods do not 
correspond exactly to our sample period, some adaptations were made. First, the value of 
3×10-8 (for the crisis period from 2007:07 to 2009:04 in Bao et al. (2018)) was applied to the 
first sub-period from 2008:12 to 2009:04 in our analysis. Second, the value of 2.4×10-8 (for 
the post-Volcker period from 2014:04 to 2016:03 in their analysis) was applied to the last 
sub-period from 2014:04 to 2019:09 in our analysis. In sum, the following values were used 
as price impact ratio L in [14] for BOF: (i) 3×10-8 for 2008:12-2009:04; (ii) 2.1×10-8 for 
2009:05-2010:07; (iii) 1.5×10-8 for 2010:08-2014:03; and (iv) 2.4×10-8 for 2014:04-2019:09.  
 
5.4. Price impact ratio for MXF 
As MXF hold a mix of stocks and bonds, both LS and LB should be combined with their 
respective weights in the global portfolio of MXF. Consequently, price impact ratio L in [14] 
for MXF is defined as follows: 
 

𝐿567 = {𝐿, ×𝑊,}567 + {𝐿( ×𝑊(}567      [18] 
 
where: WS and WB refer to the weights of stocks and bonds in the global portfolio of MXF, 
respectively; and {LS×WS}MXF = {LS,EUR×WS,EUR + LS,USD×WS,USD + LS,ROW×WS,ROW}MXF. 
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6. Results: Aggregate vulnerability under three scenarios 
Aggregate vulnerability (AVt+2) as defined in [15] was finally estimated under three scenarios; 
(i) ‘Scenario A’ or ‘Baseline scenario’, where series of original returns are introduced as Rt; 
(ii) ‘Scenario B’ or ‘5% scenario’, where an initial shock of -5% return is assumed and 
introduced as Rt; and (iii) ‘Scenario C’ or ‘10% scenario’, where an initial shock of -10% 
return is assumed and introduced as Rt. In parallel, the regime-dependent estimates of FPS 
for each of the fund categories were used when estimating AV. As for the price impact ratio, 
LS by currency (i.e. LS,EUR, LS,USD, and LS,ROW) are used for EQF and MXF, while LB based on 
Bao et al. (2018) is used for BOF and MXF.  
 
 
6.1. Equity funds 
Figure 4 plots the estimated series of AV for EQF, and Table 3 provides their respective 
summary statistics. The left panels of Figure 4 plot AV under scenario A, while the right 
panels contrast AV under scenario B with AV under scenario C. AV under scenarios B and C 
are much higher than AV under scenario A, which confirms the severity of the adverse 
scenarios. In parallel, the upper panels of Figure 4 plot AV based on γMS1 (=-0.0404), while 
the lower panels depict AV based on γMS2 (=0.0523). Note that AV based on γMS2 are higher 
than AV based on γMS1, which can be partly explained by the fact that the absolute value of 
the MS2 estimate is greater than that of the MS1 estimate. In addition, the negative MS1 
estimate might reduce the total amount of assets to be liquidated (i.e. 𝝓S  as shown in 
equation [13]), which might in turn decrease AV. Table 3 shows that, when based on γMS2, 
the highest AV is measured at 6.95 bps under scenario A, while it is at 85.9 bps (or 163 bps) 
under scenario B (or C). 
 
 

Figure 4. Aggregate vulnerability of EQF 

 
Notes. This figure plots six series of estimated AV for EQF, based on two MS estimates of FPS (‘MS1’ and ‘MS2’) 
under three scenarios (A, B, C), expressed in basis points. The results cover the period between February 2009 
and November 2019.  
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Table 3. Summary statistics of AV for EQF 
Scenario FPS Obs. Mean Min. Fract.90 Fract.95 Max. 

A 
MS1 128 1.43E+00 -8.49E-03 2.53E+00 2.85E+00 4.23E+00 
MS2 128 2.63E+00 -1.54E-02 4.49E+00 5.03E+00 6.95E+00 

B 
MS1 128 1.82E+01 7.62E+00 3.32E+01 3.78E+01 4.96E+01 
MS2 128 3.40E+01 1.51E+01 5.60E+01 6.46E+01 8.59E+01 

C 
MS1 128 3.39E+01 1.41E+01 6.20E+01 7.06E+01 9.26E+01 
MS2 128 6.46E+01 2.88E+01 1.07E+02 1.23E+02 1.63E+02 

Notes. This table provides summary statistics of the estimated series of AV for EQF under three scenarios (A, B, 
C) expressed in basis points. The sample period goes from February 2009 and November 2019.  

 
 
6.2. Bond funds 
Figure 5 plots the estimated series of AV for BOF. Its left panel depicts AV under scenario A, 
while the right panel plots AV under scenarios B and C. In particular, the right panels show 
that AV sharply rose during mid-2014. This jump can be partly accounted for by the increase 
in the time-period dependent price impact ratio for bonds LB (from 1.5×10-8 to 2.4×10-8; see 
Section 5.3). In parallel, the upper panels plot AV based on γMS1 (=0.0382), while the lower 
panels depict AV based on γMS2 (=-0.0641). AV based on γMS1 are higher than those based 
on AV based on γMS2, which is mainly due to the fact that γMS1 is positive (increasing 𝝓S  
leading to higher AV) and that γMS2 is negative (decreasing the absolute value of 𝝓S  leading to 
lower AV). Summary statistics of AV for BOF are provided in Table 4. When based on γMS1, 
the highest AV is measured at 123 bps and 237 bps under scenarios B and C, respectively, 
which are much higher than that under scenario A (8.70 bps). 
 
 

Figure 5. Aggregate vulnerability of BOF 

 
Notes. This figure depicts six series of estimated AV for BOF, based on two MS estimates of FPS (‘MS1’ and 
‘MS2’) under three scenarios (A, B, C), expressed in basis points. The results cover the period between February 
2009 and November 2019.   
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Table 4. Summary statistics of AV for BOF 

Scenario FPS Obs. Mean Min. Fract.90 Fract.95 Max. 

A 
MS1 128 2.32E+00 -1.73E+00 4.31E+00 5.83E+00 8.70E+00 
MS2 128 1.86E+00 -1.36E+00 3.29E+00 4.52E+00 6.22E+00 

B 
MS1 128 6.58E+01 2.49E+01 9.95E+01 1.06E+02 1.23E+02 
MS2 128 4.98E+01 2.56E+01 7.13E+01 7.42E+01 7.63E+01 

C 
MS1 128 1.26E+02 4.73E+01 1.92E+02 2.05E+02 2.37E+02 
MS2 128 9.07E+01 4.71E+01 1.30E+02 1.36E+02 1.40E+02 

Notes. This table provides summary statistics of the estimated series of AV for BOF under three scenarios (A, B, 
C), expressed in basis points. The sample period goes from February 2009 and November 2019. 

 
 
6.3. Mixed funds 
Figure 6 plots the estimated series of AV for MXF, and Table 5 provides their summary 
statistics, respectively. The left panels of Figure 6 depict AV under scenario A, while the right 
panels plot AV under scenarios B and C. Upper panels plot AV based on γMS1 (=0.0102), 
while lower panels depict AV based on γMS2 (=-0.0327). Similar to the case of BOF, AV 
based on γMS1 are higher than AV based on γMS2, mainly due to the fact that γMS1 is positive 
while γMS2 is negative. Table 5 shows that, when based on γMS1, the highest AV is 3.09 bps 
under scenario A, which is much lower than those under scenario B (64.5 bps) or scenario C 
(127 bps). 
 
 

Figure 6. Aggregate vulnerability of MXF 

 
Notes. This figure plots six series of estimated AV for MXF, based on two MS estimates of FPS (‘MS1’ and ‘MS2’) 
under three scenarios (A, B, C), expressed in basis points. The results cover the period between February 2009 
and November 2019.  
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Table 5. Summary statistics of AV for MXF 

Scenario FPS Obs. Mean Min. Fract.90 Fract.95 Max. 

A 
MS1 128 7.66E-01 -6.74E+00 1.63E+00 1.93E+00 3.09E+00 
MS2 128 2.96E-01 -2.43E+00 7.02E-01 9.89E-01 1.42E+00 

B 
MS1 128 2.55E+01 1.10E+01 4.00E+01 5.01E+01 6.45E+01 
MS2 128 8.47E+00 -1.12E+01 1.70E+01 1.90E+01 2.21E+01 

C 
MS1 128 5.01E+01 2.15E+01 7.85E+01 9.83E+01 1.27E+02 
MS2 128 1.39E+01 -2.55E+01 3.01E+01 3.34E+01 3.98E+01 

Notes. This table provides summary statistics of the estimated series of AV for MXF under three scenarios (A, B, 
C), expressed in basis points. The sample period goes from February 2009 and November 2019.  

 
 
6.4. Comparison of AV across fund categories 
As discussed above, positive γ-based AV is higher than negative γ-based AV for each 
category of fund. In parallel, it is clear that scenario B is more plausible than scenario C. This 
suggests that the positive γ-based AV under scenario B can qualify as the ‘most relevant’ AV 
from a macroprudential perspective for each of the three categories of fund. Figure 7 plots 
these series for a comparison across fund categories. It shows that BOF have been the most 
vulnerable during the sample period, followed by EQF and MXF.  

 
 

Figure 7. Comparison of AV: EQF vs. BOF vs. MXF 

 
Notes. This figure depicts the positive γ-based AV under scenario B (-5% shock) for each of the three categories 
of fund (EQF, BOF and MXF). The sample period goes from February 2009 to November 2019.  
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6.5. Global aggregate vulnerability (GAV)  
We now combine the series of positive γ-based AV for each category of fund to define a 
global indicator of aggregate vulnerability (GAV) for the investment fund sector of 
Luxembourg as a whole. We also take into account each fund category’s respective weights 
in the sector’s total AuM (see Figure B in the Appendix) when estimating GAV under the 
three scenarios (A, B and C). Figure 8 depicts the resulting series of GAV, and their 
summary statistics are provided in Table 6.  
 
 

Figure 8. GAV of the investment fund sector in Luxembourg 

 
Notes. This figure depicts the series of global aggregate vulnerability (GAV) estimated under three scenarios, A 
(baseline), B (-5% shock to aggregate fund return) and C (-10% shock to aggregate fund return). The sample 
period goes from February 2009 to November 2019. 

 
 

Table 6. Summary statistics of GAV of the investment fund sector in Luxembourg 
Scenario Obs. Mean Min. Fract.95 Max. 2009/02 2019/11 
GAV_A 130 1.69E+00 -1.26E-01 3.23E+00 4.26E+00 1.50E+00 2.09E+00 
GAV_B 130 3.72E+01 1.45E+01 6.41E+01 7.78E+01 2.74E+01 6.67E+01 
GAV_C 130 7.16E+01 2.77E+01 1.23E+02 1.50E+02 5.30E+01 1.29E+02 

Notes. This table provides summary statistics for the estimated series of GAV under scenarios A (baseline), B (-
5% shock to aggregate fund return) and C (-10% shock to aggregate fund return). The sample period goes from 
February 2009 to November 2019. 

 

On average during the sample period, GAV was around 1.69 bps under scenario A, 
suggesting that the investment fund sector in Luxembourg has not been subject to shocks 
that precipitated any periods of significant vulnerability. The average GAV under scenarios B 
and C is 37.2 bps and 71.6 bps, respectively. This seems to indicate that the sector's 
exposure to severe shocks has been rather limited. Other statistics for the GAV series, such 
as the 95th percentiles or maximum values, also seem to confirm the sector’s limited 
vulnerability.  
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When looking at the GAV series’ dynamic, one may conclude that the investment fund 
sector of Luxembourg has not been meaningfully vulnerable to external shocks to the funds’ 
returns. However, it is worth noting that the sector's global vulnerability is progressively 
increasing. As of November 2019, GAV is 66.7 bps under scenario B, suggesting that the 
investment fund sector is exposed to a liquidation of 0.667% of the sector’s aggregate equity 
if the stock and bond markets were to decline by 5%.  

 
 

7. Conclusion 
This paper assesses the aggregate vulnerability (AV) of the investment fund sector of 
Luxembourg by implementing a macroprudential framework for stress testing under the 
assumption of initial adverse shocks to fund returns. Following Greenwood et al. (2015) and 
Fricke and Fricke (2017), two key parameters, flow-performance sensitivity (FPS) and asset 
price impacts, are included in the stress test model. Further, this paper extends the analysis 
by adopting non-linear methods of calibration for the key parameters in an attempt to better 
capture the effects of the negative sequence relating initial shocks to additional funding 
shocks and fire sales.  

The empirical results suggest that bond funds have been the most vulnerable, followed by 
equity funds and mixed funds. The results also suggest a sector-level vulnerability of 66.7 
bps under scenario B, as of November 2019, suggesting that the sector was potentially 
exposed to a liquidation of 0.667% of its aggregate equity if both the stock and bond markets 
declined by 5%.  

The estimated magnitude of global exposure can be considered rather limited, 
consequently suggesting that the investment fund sector is sufficiently resilient to exogenous 
shocks and that it is not likely to raise any particular concern for financial stability in 
Luxembourg. However, this conclusion should be interpreted against the background of an 
elevated risk of a reversal in risk premia at the global level. Under such conditions, investors 
may be subject to a sudden increase in their degree of risk aversion, which could potentially 
increase the aggregate vulnerability of investment funds in Luxembourg due to higher FPS 
and stronger price impacts. Continued macroprudential monitoring of the investment fund 
sector is therefore warranted. 
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Appendix 
 
 

Figure A. Assets under management (in euro) 

 
Notes. This figure depicts assets under management of EQF, BOF and MXF in absolute value (in euro). EQF = 
equity funds; BOF =bond funds; MXF = mixed funds. The sample period goes from December 2008 to September 
2019. 

 
 

Figure B. Relative weights in total AuM of all funds in Luxembourg 

 
Notes. This figure depicts the relative weights of EQF, BOF and MXF in total assets under management of all 
open-ended funds in Luxembourg. EQF = equity funds; BOF =bond funds; MXF = mixed funds. The sample 
period goes from December 2008 to September 2019. 
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Figure C. Leverage ratio 

 
Notes. This figure depicts the leverage ratio of EQF, BOF and MXF, defined as debt over capital. EQF = equity 
funds; BOF =bond funds; MXF = mixed funds. The sample period goes from December 2008 to September 2019. 

 
 

Figure D. Relative weights of stocks and bonds in the portfolio of MXF 

 
Notes. This figure depicts the relative weights of stocks and bonds in the portfolio of mixed funds (MXF). The 
sample period goes from December 2008 to September 2019. 
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Table A. MS-VAR model specification tests:  
AIC/SBC for optimal number of lags and RCM for optimal number of regimes 
Fund category EQF  BOF  MXF  

Specification \ Test AIC SBC RCM AIC SBC RCM AIC SBC RCM 
MS(2)-C(1) 1.24 1.84 59 0.99 1.59 26 0.91 1.51 2 

MS(2)-CH(1) 1.05 1.65 21 0.9 1.5 33 NA NA 24 
MS(2)-C(2) 1.19 2.07 50 0.85 1.72 15 0.84 1.72 8 

MS(2)-CH(2) 1.15 2.02 26 0.52 1.39 4 1.16 2.04 46 
MS(2)-C(3) 1.18 2.33 7 1.03 2.18 44 1.25 2.4 3 

MS(2)-CH(3) 1.04 2.19 9 0.78 1.93 30 1.24 2.39 24 
Notes. MS(2) refers to MS-VAR model with two regimes. ‘C’ and ‘CH’ correspond to Equations [16] and [17], 
respectively. The numbers in parentheses after ‘C’ or ‘CH’ refer to the number of lags. AIC refers to the Akaike 
information criterion. SBC refers to the Schwarz information criterion or the Bayesian information criterion (BIC). 
RCM refers to the regime classification measure of Ang and Bekaert (2002). EQF = equity funds; BOF =bond 
funds; MXF = mixed funds. The sample period goes from December 2008 to September 2019. 

 

Table B. Stock indexes used in the calibration of the price impact parameter for stocks LS 

Index 
number 

Country, Currency and Index name SDW* code 

INDEX_01 World (all entities), Euro, Euronext 100 Index FM.B.A1.EUR.RT.EI._N100 
INDEX_02 Belgium, Euro, Belgium BEL 20 Index FM.B.BE.EUR.RT.EI._BFX 

INDEX_03 
Canada, Canadian dollar, Standard and Poors 
Toronto Stock Exchange Composite Index 

FM.B.CA.CAD.RT.EI._GSPTSE 

INDEX_04 
Switzerland, Swiss franc, Swiss Market Index 
(SMI) 

FM.B.CH.CHF.RT.EI._SSMI 

INDEX_05 Spain, Euro, Spain IBEX 35 Index FM.B.ES.EUR.RT.EI._IBEX 

INDEX_06 
Finland, Euro, Nordic Exchange OMX Helsinki 
Price Index 

FM.B.FI.EUR.RT.EI._OMXHPI 

INDEX_07 France, Euro, France CAC 40 Index FM.B.FR.EUR.RT.EI._FCHI 

INDEX_08 
United Kingdom, UK pound sterling, Financial 
Times Stock Exchange (FTSE) Mid 250 Index 

FM.B.GB.GBP.RT.EI._FTMC 

INDEX_09 
Greece, Euro, Athens Stock Exchange Main 
General Index 

FM.B.GR.EUR.RT.EI._ATG 

INDEX_10 
Hong Kong, Hong Kong dollar, Hong Kong 
Stock Exchange HANG SENG Index (HSI) 

FM.B.HK.HKD.RT.EI._HSI 

INDEX_11 
Ireland, Euro, Irish Stock Exchange ISEQ 
Overall Index 

FM.B.IE.EUR.RT.EI._ISEQ 

INDEX_12 Italy, Euro, FTSE Milan Stock Exchange MIB FM.B.IT.EUR.RT.EI._FTMIB 
INDEX_13 Japan, Japanese yen, Nikkei 225 Index FM.B.JP.JPY.RT.EI._N225 

INDEX_14 
Korea, Republic of, Korean won (Republic), 
Korea Stock Exchange KOSPI Index 

FM.B.KR.KRW.RT.EI._KS11 

INDEX_15 
Luxembourg, Euro, Luxembourg Stock 
Exchange LuxX Index 

FM.B.LU.EUR.RT.EI._LUXX 

INDEX_16 
Netherlands, Euro, Amsterdam Exchanges 
Index 

FM.B.NL.EUR.RT.EI._AEX 
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INDEX_17 Portugal, Euro, Lisbon PSI 20 Index FM.B.PT.EUR.RT.EI._PSI20 

INDEX_18 
Euro area (changing composition), Euro, 
Vienna Stock Exchange Austrian Traded 
Index 

FM.B.U2.EUR.RT.EI._ATX 

INDEX_19 
Euro area (changing composition), Euro, 
German Stock Exchange DAX Index 

FM.B.U2.EUR.RT.EI._GDAXI 

INDEX_20 
Euro area (changing composition), Euro, Dow 
Jones Eurostoxx 50 Index 

FM.B.U2.EUR.RT.EI._STOXX50E 

INDEX_21 
United States, US dollar, Dow Jones 
Composite Index 

FM.B.US.USD.RT.EI._DJA 

INDEX_22 
United States, US dollar, Dow Jones Industrial 
Average Index 

FM.B.US.USD.RT.EI._DJI 

INDEX_23 
United States, US dollar, Dow Jones US 
Banks Index 

FM.B.US.USD.RT.EI._DJUSBK 

INDEX_24 United States, US dollar, Nasdaq Index FM.B.US.USD.RT.EI._NDX 
Notes. * SDW refers to the ECB’s Statistical Data Warehouse. 
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