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sumption in an otherwise standard cake-eating problem. I show that precautionary be-

haviour is optimal, no matter how low the probability of catastrophic climate outcomes.
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RÉSUMÉ NON TECHNIQUE

Depuis longtemps, notre demande de biens et services produits par la nature dépasse la

capacité de celle-ci à les fournir, entraı̂nant une dégradation massive de la biosphère, c’est-à-

dire de la somme de tous ses écosystèmes.

Cette situation a de nombreux effets néfastes, allant du réchauffement planétaire à l’extinction

massive des espèces, du stress hydrique à des chocs météorologiques plus fréquents et plus

graves. Ces dommages environnementaux sont irréversibles, du moins à l’échelle humaine.

Ce papier développe un modèle simple afin de démontrer qu’une plus grande fréquence

d’événements naturels dévastateurs, c’est-à-dire d’épisodes qui causeraient des pertes irréversibles

pour la biosphère, augmente la valeur sociale des ressources naturelles. Il en résulte que la

politique optimale comporte une réduction de notre consommation de ces ressources.

La logique est simple : la possibilité d’événements naturels dévastateurs, aussi faible que

soit leur probabilité, justifie un comportement de précaution. En d’autres termes, elle incite

le décideur à accumuler une réserve de capital naturel qui permet de réduire la probabilité

de chocs futurs et d’en amortir les effets s’ils se produisent.
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What’s done cannot be undone.

William Shakespeare

1. INTRODUCTION

Climate change increases the frequency and severity of weather shocks. I will argue that

this heightened risk of devastating natural events raises the value of natural capital, making

it optimal to lower our consumption of Nature’s goods and services.

In this paper, I embed tail risk into the well-known “cake-eating” problem developed by

Hotelling (1931). The economy starts with a finite stock of a homogeneous consumption

good. As in Dasgupta and Heal (1974), there is no production, but a flow of the consump-

tion good is fed into the economy at each instant. The central planner chooses the rate of

consumption to maximise expected welfare.

I study two versions of the model. In the first version, a single tipping point threatens the

economy. If it is crossed, the flow of the consumption good collapses, and the economy has

no additional resources going forward.

In the second version of the model, it is the stock of the consumption good itself that is

subject to both Brownian movement and to an unbounded number of stochastic jumps.

Though the two versions share the same mathematical structure, there is a key difference.

In the first version, the planner knows what lies beyond the tipping point, and controls the

likelihood of crossing it. In the second version, the planner cannot control the stochastic

properties of the shocks, and his or her stock of the consumption good is threatened by much

greater risks.1

The two theoretical frameworks convey the same message: the possibility of disastrous

outcomes, however low their probability, motivates precautionary behaviour. That is, it be-

comes optimal to cut consumption to build a buffer of the consumption good.

My work is inspired by Weitzman (2011), Stern (2013) and Pindyck (2021), who stress the

need to account for the uncertainty and nonlinearities inherent in the climate system. My

paper also follows the call by Dasgupta (2021) to allow Nature to play a more prominent

1Think of the first version of the model as an environment where limiting the negative effects of climate
change is still within reach. In contrast, think of the second version as an environment where the Earth is
already beyond repair, so the human population faces much larger risks.
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role in macroeconomic models. He stresses that if our demand for Nature’s goods and ser-

vices persistently exceeds Nature’s ability to supply them, then the stock of natural capital

deteriorates, bringing the biosphere closer to the brink of collapse.

In addition, my paper connects with the literature on economic growth and the environ-

ment [see Xepapadeas (2005) and references]. This body of work focuses on the gap between

market outcomes and the social optimum in deterministic settings. Instead, my focus is on

how the risk of catastrophic climate outcomes shapes the central planner’s choices.

Lastly, my work is linked to the literature on optimal stopping problems in environmental

economics [Pindyck (2000); Pindyck (2002)]. As in these studies, I draw attention to the policy

implications of irreversible environmental damages. However, I focus on stochastic control

problems where the control variables are adjusted continuously over time, rather than the

optimal timing of a discrete policy action.

2. MODEL 1

2.1. Set up. Consider the following control system:

ṡ(t) = m(t)− c(t), t ∈ [0, T], s(0) = s0,

s(t) ∈ R>+∀t, c(t) ∈ R>+∀t,
(1)

where T < ∞. Here s(t) is the stock of a homogeneous consumption good; c(t) is the rate of

consumption; and m(t) is the flow of this consumption good that is fed into the economy. At

a certain stochastic time τ, the rate m(t) jumps according to:

m(t) =

m t < τ,

0 t ≥ τ,
(2)

where m > 0. In words, the economy may cross a tipping point beyond which the flow

of the consumption good collapses to zero. The word ”may” is important here. The random

variable τ takes values in (0, ∞), while t takes values in [0, T]. Therefore there is no guarantee

that the tipping point will be crossed in [0, T].

The random variable τ is exponentially distributed with hazard rate λ(s) ≥ 0 ∀s ∈ R>+.

The latter rate is a C1-function of s with λ′(·) ≤ 0 and supsλ(s) < ∞. The exponential
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distribution is a natural choice, for it is often used to measure the expected time for an event

to occur.2

Social welfare in [0, T] is given by:∫ T

0
U(c(t))dt + B(s(T)). (3)

U(·) is monotonically increasing, strictly concave, and twice differentiable everywhere. Also,

limc→0U′(c) = ∞. In addition, B(·), which is a C2-function of s(T) with B′(·) > 0, measures

the scrap value of the stock of the consumption good at T. I also assume that lims→0B′(s) =

∞.3

The central planner chooses the consumption path, {c(t)}T
0 , that maximises (3) s.t. (1), (2).

Remark I. Think of s(t) as the stock of natural capital, and of m(t) as its regeneration rate

- or equivalently, its yield per unit of time. Furthermore, think of c(t) as the rate at which

the human population harvest Nature’s goods and services. At each point in time in this

framework, our demand for these goods and services may differ from Nature’s ability to

supply them; the difference is accommodated by a change in s(t). However, as the stock of

natural capital is drawn down, Nature gets closer to the brink of collapse.

Remark II. I implicitly set the discount factor to 1. This assumption, made for mathematical

tractability, may seem too strong at first. However, as will become clear, it is not driving the

main insights of the paper. Furthermore, the principles of discounting set out in the 70s and

80s [e.g. Arrow and Lind (1970) and Dreze and Stern (1990)] can justify a discount factor

of 1. Think of the discount factor between time 0 and time t as the shadow value of the

consumption good at time t relative to time 0. This shadow value will depend on the state

of affairs at these two dates. If the consumption good were to become scarce at time t (for

instance, due to the crossing of a tipping point), then its shadow price would be high, and

the discount factor could be close to unity (or even above it) [Stern (2013)].

2.2. Optimality Conditions. The above model is a piecewise deterministic optimal control

problem. That is, the control system is governed by deterministic ordinary differential equa-

tions but shocked by a stochastic disturbance. I solve this problem using the extremal method

2Though the main insights of the paper do not depend on this assumption, the exponential distribution
does make solving the model easier.

3This assumption ensures that s(T) > 0. In turn, this implies that s(t) > 0 for all t ∈ [0, T], thus satisfying
(1).
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due to Seierstad (2009). For problems with a finite time horizon, this method, which is closely

related to the Hamilton-Jacobi-Bellman (HJB) equation, yields a convenient backward induc-

tion solution procedure. Let the subscript a (b) denote the path of a given variable after

(before) the tipping point is crossed.

2.2.1. Dynamics after the jump. Suppose the jump in m(t) has already occurred; that is, t > τ.

The dynamics of the control system are given by:4

q̇a(t) = 0,

ṡa(t) = −ca(t),

µ̇a(t) = −U(ca(t)),

ca(t) = U′−1(qa(t)),

(4)

with boundary conditions: qa(T) = B′(sa(T)), µa(T) = B(sa(T)), and sa(τ) = sb(τ). Here

q(t) is a standard co-state variable measuring the value of an infinitesimal increase in s(t).

Think of q(t) as a shadow price. In addition, the auxiliary state variable µ(t) measures the

expected flow of remaining social welfare along the optimal path.

Three features are worth noting in system (4). First, qa(t), and hence ca(t), is constant. After

crossing the tipping point, there is no more risk, and total consumption smoothing becomes

optimal.5 Second, the added satisfaction that the planner gets from one extra unit of s at time

T pins down qa(t). This bequest motive, together with the curvature of the utility function,

also determines ca(t). Third, once the tipping point is crossed, sa(t) declines steadily. Indeed,

with a strictly positive rate of consumption and no new flow of the consumption good, sa(t)

can only decline.

System (4) has the following closed-form solution:

qa(t) = B′(sa(T)),

sa(t) = sb(τ) + U′−1(B′(sa(T)))(τ − t),

µa(t) = B(sa(T)) + U(U′−1(qa(t)))(T − t),

ca(t) = U′−1(B′(sa(T))),

(5)

4In the interest of space, I directly report the optimality conditions of the model. Please refer to Naevdal
(2006) and Seierstad (2009) for a detailed discussion on how to derive these optimality conditions in a general
piecewise deterministic optimal control problem.

5As mentioned earlier, the discount rate is 0, so the planner values all periods equally.
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where sa(T) is implicitly given by the second equation in (5).

2.2.2. Dynamics before the jump. Suppose now that the jump has not yet happened; that is,

t < τ. The dynamics of the system are given by:

q̇b(t) = λ(s)[qb(t)− qa(t)] + λ′(s)[µb(t)− µa(t)],

ṡb(t) = m− cb(t),

µ̇b(t) = −U(cb(t)) + λ(s)[µb(t)− µa(t)],

cb(t) = U′−1(qb(t)),

(6)

with boundary conditions: qb(T) = B′(sb(T)), µb(T) = B(sb(T)), and sb(0) = s0.

In system (6), the planner accounts for the risk of crossing the tipping point: the optimal

path after the jump affects the system dynamics before such the jump occurs. The planner also

internalises how his or her choices affect the likelihood of crossing the tipping point. Indeed,

both λ(s) and λ′(s) shape system (6).

Crucially, the planner’s optimal choices include a precautionary component. As seen in

the first equation of system (6), two factors motivate precautionary behaviour. Focus first

on the term η1 = λ(s)[qb(t) − qa(t)]. Once a jump happens, s(t) becomes scarcer, and its

shadow price, q(t), jumps upwards. Hence, qb(t) − qa(t) < 0 ∀t ∈ [0, τ]. Therefore, η1

pushes qb(t) downwards over time. Put differently, η1 calls for a low initial consumption rate

that gradually increases over time. These dynamics allow the planner to build a cushion of

s(t) at the beginning of the time horizon. The goal is to limit the fall in consumption if the

tipping point is ever crossed. The hazard rate, λ(s), governs how significant this effect is.

Let us now look at the term η2 = λ′(s)[µb(t) − µa(t)]. Once a jump happens and s(t)

becomes scarcer, the expected flow of remaining welfare, µ(t), jumps downwards. Hence,

µb(t) − µa(t) > 0 ∀t ∈ [0, τ]. Since λ′(s) < 0, η2 pushes qb(t) downwards over time too.

These downward dynamics generate a rising consumption profile, which, again, allows the

planner to start by building a buffer of s(t). However, η2 captures a different goal from η1:

that of lowering the likelihood of crossing the tipping point.6

In sum, the risk of a tipping point generates two sources of precautionary behaviour and

encourages the central planner to create a natural capital buffer.

6If the hazard rate was exogenous (i.e. λ′(s) = 0), η2 would disappear.
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2.3. Numerical Examples. The nonlinear boundary value problem (6) has no closed-form

solution. Hence, I solve it using the collocation method proposed by Shampine et al. (2003).

The numerical examples illustrate my key message - the possibility of crossing a tipping point

encourages precautionary behaviour.

2.3.1. Parametrisation. I use the following functional forms: U(·) = log[c(t)], B(·) = φlog[s(T)],

and λ(·) = γ/s(t). Here φ > 0 governs the size of the bequest motive, and γ ≥ 0 determines

the likelihood of crossing the tipping point and how sensitive this likelihood is to the plan-

ner’s choices.

Turning to the parameter values, I think of the horizon [0, T] as the period a policy-maker

is in office. I thus set T = 16, which corresponds to 4 years at quarterly frequency. I also

set s0 = 1 and m = 0.0125. Hence, if s is depleted before the jump, it will take 20 years of

zero-consumption (before the jump) to bring it back to its initial state.7 Lastly, I do not choose

a single value for γ and φ, because I have no empirical basis to do so. Instead, I perform

comparative statics to assess how the model insights depend on these two parameters.

2.3.2. Model Dynamics. Figure 1 illustrates the dynamics described in 2.2. Solid blue lines

show the path of the control system when the tipping point is crossed at t = 10. Dashed black

lines, which serve as a benchmark, show the path of an hypothetical control system where

there is no tipping point risk (i.e. λ(s) = 0 for all s ∈ R>+).8 In this riskless benchmark, both

the shadow price of capital and the rate of consumption are constant.

As discussed in 2.2.2, the possibility of crossing a tipping point at some uncertain future

date encourages the planner to cut consumption in the initial stages of the simulation to

boost the stock of natural capital. It is in this sense that the planner’s optimal behaviour is

precautionary.

2.3.3. Comparative statics: {γ, φ}. Figure 2 plots the initial rate of consumption, c(0), against

the expected probability of crossing the tipping point in (0, T], which I denote by P0(τ < T).

I vary this probability by changing γ.

7Nature only regenerates slowly. For example, Archer (2005) finds a mean atmospheric lifetime of anthro-
pogenic CO2 of 300 years. Likewise, Liebsch et al. (2008) find that the Brazilian Atlantic forest would take at
least 65 years to partly regenerate, and up to 4,000 years to fully regain its pristine state. Along the same lines,
Duarte et al. (2020) suggest that substantial recovery of the abundance, structure and function of marine life
would need 30 years.

8In Figure 1, I set γ = 0.08, yielding an unconditional probability of crossing the tipping point in [0, T] of
50%. I also set φ = 40, so that the economy without tail risks features c/m = 1.7. The qualitative features of
Figure 1 do not depend on these values.
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FIGURE 1. Model dynamics.
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FIGURE 2. Comparative statics.
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Raising P0(τ < T) lowers c(0), for a higher risk of crossing the tipping point boosts pre-

cautionary behaviour. Algebraically, increasing γ raises the absolute value of both λ(s) and

λ′(s), thus pushing up q(0) and pushing down c(0).
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I now assess the role played by the bequest motive (i.e. parameter φ). Increasing φ reduces

c(0). A stronger bequest motive raises the cost of crossing the tipping point, since this lowers

s(T). Therefore, a stronger bequest motive foster precautionary behaviour, which (again)

increases q(0) and decreases c(0).

3. MODEL 2

In the first version of the model, the planner knew what lay beyond the tipping point

and controlled the likelihood of crossing it. I now introduce a second version where the

planner does not control the statistical properties of the shocks and faces much greater risks.

Specifically, the stock of consumption good itself will be subject to Brownian movement and

to an unbounded number of stochastic jumps.

3.1. Set up. Natural capital, s(t) ∈ R>+, is now governed by the following stochastic differ-

ential equation with jumps:

ds(t) = [m− ĉ(t)] s(t)dt + σs(t)dW(t)

s(τi+) = µis(τi−).
(7)

Here m, σ > 0 are constants, ĉ = c/s is the consumption to capital ratio, and W(t) is a 1-

dimension standard Brownian motion process.9 The µi’s are i.i.d. random variables with

density function g(µ) on (0, 1). Note then that Eµζ > 1, ∀ζ < 0.

In English, s(t) jumps at certain random times, τi. Between jumps, s(t) follows a standard

stochastic differential equation. The sizes of these jumps have a random component, µi ∈
(0, 1), which makes forecasting the future path of s(t) harder.

The number of jumps, τi, is unbounded. The first jump point, τ1, is exponentially dis-

tributed in [0, ∞), while all subsequent jump points, τi for i > 2, are exponentially distributed

in [τi−1, ∞). These exponential distributions share the same hazard rate, λ.

All sources of randomness are mutually independent. The solution to eq. (7) is piecewise

continuous, and continuous in (τi, τi+1).

9Both Nature’s regenerative rate and the diffusion coefficient are proportional to s(t). This proportionality
yields a closed-form solution of the model and ensures that s(t) ∈ R>+∀t.
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Since the central planner maximises social welfare in [0, T], the value function is given by:

v(t, s) = sup
c>0

E
[∫ T

0
U(c(t))dt + B(s(T))

]
,

(t, s) ∈ [0, T]×R>+.

(8)

The functions U(·) and B(·) satisfy the usual conditions defined in 2.1.

3.2. Solution. The above model is a stochastic control problem with jumps. The value func-

tion, v(t, s), satisfies the following HJB equation:10

vt(t, s) + max
c>0
{U(c) + vs(t, s) [m− ĉ(t)] s(t)}

+
1
2

σ2s2vss(t, s) + λE [v(t, µs)− v(t, s)] = 0,
(9)

with v(T, s) = B(s(T)).11

To obtain a closed-form smooth solution to eq. (9), U(·) and B(·) are specified with a

constant risk aversion form and share the same exponent: U(·) = c(t)α

α , B(·) = φ
s(T)α

α , where

φ > 0. For simplicity, I set α < 0, so that the degree of risk aversion is strictly larger than 1.

I look for a solution to the HJB equation of the form ω(t, s) = θ(t) s(t)α

α for some positive

function θ(t). The boundary condition v(T, s) = B(s(T)) then becomes θ(T) = φ.

Solving the max operator in eq. (9) yields:

ĉ(t) = θ(t)
1

α−1 .

Substituting this optimality condition together with ω(t, s) and its derivatives in the HJB

equation gives:

θ′(t) + (1− α)θ(t)
α

α−1 + γθ(t) = 0, (10)

where γ = α{m + α−1
2 σ2 + λ

α [Eµα − 1]}.
Eq. (10) is a Bernoulli differential equation. Under the boundary condition θ(T) = φ, the

particular solution to this Bernoulli differential equation is:

θ(t) =
[

α− 1
γ

+

[
φ

1
1−α +

1− α

γ

]
e

γ
1−α (T−t)

]1−α

.

It can be easily shown that, as initially guessed, θ(t) is a positive function in [0, T].

10See chapter 4 in Seierstad (2009) for a detailed discussion on solving stochastic control problems with
jumps.

11Without jumps (i.e. λ = 0), eq. (9) is the standard HJB equation for diffusion processes.



12 PABLO GARCIA SANCHEZ

The function ω(t, s) = θ(t) s(t)α

α is a C2 function in [0, T]×R>+, and satisfies the HJB equa-

tion (9) in [0, T] × R>+ with the boundary condition ω(t, s) = θ(t) s(t)α

α . Furthermore, for

every pair (t, s) ∈ [0, T]×R>+,

c∗(t) = θ(t)
1

α−1 s(t),

solves the max operator in the HJB equation. Then c∗(t) is optimal and ω(t, s) = v(t, s).

3.3. Result. I now state the model’s key message:

Proposition 1. For any s(t) ∈ R>+ and γ 6= 0,

∂v(t, s)
∂σ

< 0,
∂v(t, s)

∂λ
< 0,

∂c∗(t)
∂σ

< 0,
∂c∗(t)

∂λ
< 0.

(11)

Proof. See Appendix A.

In words: a more volatile Brownian motion (σ) lowers welfare, because agents are risk-

averse. It also reduces consumption by inciting the planner to accumulate a natural capital

buffer to cushion the effects of future shocks.

Likewise, the parameter determining the frequency of jumps (λ) also reduces welfare.

Since the µ′is are drawn from a density function on (0, 1), jumps inevitably reduce the amount

of resources available for consumption. Put differently, jumps entail a negative wealth effect.

Crucially, the hazard rate λ also lowers consumption. Again, the planner builds a capital

buffer to lower the likelihood that the stock of capital will get dangerously close to 0.

In sum, the threat posed by these two shocks reduces welfare and fosters precautionary

behaviour.

Remark IV. Suppose that the µ′is are drawn from a Beta distribution with shape parameters

a and b; that is, µi ∼ Beta(a, b). We can vary these two parameters to increase both the

variance and the left tail of g(µ) while keeping its mean constant. Crucially, these changes

in {a, b} also raise Eµα.12 Since ∂v(t,s)
∂Eµα < 0 and ∂c∗(t)

∂Eµα < 0, we have the following observation:

Increasing the second and third moments of g(µ), while keeping its first moment constant,

lowers welfare and fosters precautionary behaviour.

12I can only prove this last statement numerically, not analytically.
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4. SUMMARY

The two theoretical frameworks presented above convey the same simple message: the

possibility of disastrous outcomes, however low their probability, motivates precautionary

behaviour. That is, it becomes optimal to cut consumption to build a buffer of the consump-

tion good.
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APPENDIX A. PROOF OF PROPOSITION 1

I only prove the first result, for the others will follow immediately. By the chain rule:

∂v(t, s)
∂σ

=
s(t)α

α

∂θ(t)
∂γ

∂γ

∂σ
,

where s(t)α

α < 0 and ∂γ
∂σ = α(α− 1)σ > 0. Because θ(t) > 0, it can be shown that:

∂θ(t)
∂γ

> 0 ⇐⇒ ϕ = 1 + e
γ

1−α (T−t).
[

γ(T − t)
1− α

− 1
]
> 0,

for all γ 6= 0.

Since ∂ϕ
∂γ = 0 ⇔ γ = 0, ∂ϕ

∂γ > 0 ∀γ > 0, and ∂ϕ
∂γ < 0 ∀γ < 0, I have ϕ > 0 for all γ 6= 0.

Hence, ∂θ(t)
∂γ > 0 and ∂v(t,s)

∂σ < 0.
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