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Abstract

Empirical evidence identifies shortages of specialized labor as one of the main
obstacles to technology adoption. In this paper, we explain this phenomenon by
developing a model in which firms require specialized labor to produce with a new
(more efficient) technology. We assume that the cost of specializing labor increases
with the efficiency gains that can be attained through the new technology. This
reveals two opposing effects on the endogenous share of specialized labor. On the
one hand, there is a wage effect by which efficiency gains widen the wage gap between
specialized and unspecialized workers, raising the share of specialized labor. On the
other hand, there is a learning effect by which efficiency gains increase specialization
costs, reducing the share of specialized labor. We show the learning effect will
dominate when firms have sufficient market power.
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Résumé non technique

L’adoption de nouvelles technologies influence la productivité, l’emploi, la concurrence et

donc l’évolution des prix. Alors que des nouvelles technologies plus performantes sont déjà

disponibles, les entreprises hésitent souvent à les adopter, en citant une pénurie de main-

d’œuvre spécialisée. En effet, une récente enquête de la BEI identifie la “disponibilité de

personnel qualifié” comme l’obstacle à l’investissement le plus cité par les entreprises de

la zone euro. Une enquête de la BCE confirme que le “recrutement et la rétention de per-

sonnel hautement qualifié” est l’un des principaux obstacles à l’adoption des technologies

numériques dans la zone euro. Au Luxembourg, le rapport PwC concernant le secteur

bancaire souligne la concurrence pour les talents et le développement des compétences du

personnel comme les principaux défis pour les banques.

Dans ce contexte, cet article développe un modèle théorique pour déterminer la part

de main-d’œuvre qui choisit de se spécialiser et donc le niveau d’adoption des nou-

velles technologies. L’adoption de ces nouvelles technologies exige une formation qui

est coûteuse pour les employeurs ainsi que pour les employés. Les employés assumeront le

côut de spécialisation uniquement s’ils peuvent s’attendre à une compensation en termes

de salaires. La concurrence entre entreprises détermine le niveau des salaires, ce qui fixe

les incitations pour la spécialisation de la main-d’œuvre et peut donc faciliter l’adoption

de technologies plus efficaces. En général, on pourrait s’attendre à ce que la part des

travailleurs spécialisés augmente avec l’efficacité de la nouvelle technologie. Cependant,

le modèle montre que le contraire est aussi possible. En fait, une nouvelle technologie

sera adoptée seulement si elle permet une hausse des salaires suffisante pour inciter les

travailleurs à se spécialiser.
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1 Introduction

The process by which new technologies are adopted determines the evolution of produc-

tivity, employment, and competition. Firms often fail to adopt more efficient technologies

when they become available, preferring to continue production with old technologies (see

Battiati et al., 2021). Digitalization is the most recent example of new technologies that

are often not adopted despite their potential for significant benefits, with many leading

firms citing the lack of specialized labor as an obstacle to their adoption.1 A recent EIB

survey reports that the “availability of skilled staff” is the most cited barrier to invest-

ment by firms based in the euro area and the US.2 Similar concerns have been raised in an

ECB survey of leading euro area companies confirming that “recruitment and retention

of highly skilled ICT staff” is one of the main obstacles to the adoption of digital tech-

nologies (Elding and Morris, 2018). Many respondents also reported the “development

of skills among staff” as an obstacle to technology adoption.3 Likewise, the 2019 PwC

report concerning the banking sector in Luxembourg, a highly developed international

financial center, highlights competition for talent and the upskilling of the workforce as

the main challenges faced by banks.4

In this context, we develop a theoretical model to analyze the source of shortages in

specialized labor and their effects on technology diffusion. New technologies often require

substantial training to be properly implemented, and training is costly for both employers

and employees. Workers will be willing to incur the education costs associated with new

technologies only if they expect sufficient returns in future wages. Therefore, technology

1Beaudry et al. (2010) find lower adoption of personal computers in US metropolitan areas with less
skilled labor. See Brunello and Wruuck (2021) for a recent review of the literature on skill shortages and
skill mismatch in Europe.

2See EIB Investment Survey 2021.
3Consolo et al. (2021) indicate skills shortages as one of the main explanations for the low productivity

gains from digitalisation.
4According to the PwC report “Banking in Luxembourg Trends Figures 2019”, 74% of banking CEOs

find that it has become more challenging to hire workers and 73% link this challenge to a deficit in the
supply of skilled labor. The report highlights the heterogeneity of skills among bank employees with 42%
of CEOs reporting challenges to retain or develop their workforce.
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adoption will not occur if the benefit of new technologies does not increase wages suffi-

ciently to persuade workers to specialize. We find that the competitive environment plays

a key role in determining the supply of specialized labor and therefore the adoption of more

efficient technologies. In general, we expect the supply of specialized labor to increase

with more efficient new technologies. However, we show that if products are sufficiently

differentiated, the supply of specialized workers can actually decrease in the efficiency

gains of the new technology. Our result is consistent with theoretical predictions. These

indicate that technology adoption can be easier when products are less differentiated (see

Milliou and Petrakis, 2011), and also that product substitutability fosters process inno-

vation (Vives, 2008). Empirical support to these predictions have been found by Beneito

et al. (2015). Intuitively, with heterogeneous firms, a decrease in product substitutability

benefits the most efficient firms, as they enjoy larger demand effects.5

More specifically, we propose a Dixit-Stiglitz model featuring endogenous education

to assess the role of skilled labor shortages as obstacles to technology adoption. In the

model there are two technologies for production. A standard technology and a new (more

efficient) technology, which allows firms to produce more output with the same amount

of capital. Firms can adopt the new technology only by recruiting specialized labor.

The cost of specialization varies across workers depending on their idiosyncratic ability.

It is reasonable to assume a positive relationship between the required learning effort

and the efficiency gains associated with the new technology. This leads to two opposing

effects on education incentives. Not only do the efficiency gains increase the wage gap

between specialized and unspecialized labor (positive wage effect), but they also increase

the average specialization cost (negative learning effect). When the first effect dominates,

the supply of specialized labor will increase in the relative efficiency of the new technology.

5See Melitz (2003), who was the first to show that the profit of most efficient firms increases with the
degree of substitutability. The same relationship between product differentiation and firms profits can
also emerge in different competitive setups. For instance, in a differentiated duopoly, Zanchettin (2006)
demonstrates that the most efficient firm can benefit when products are less differentiated.
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In this case, firms can offer a sufficient wage gap to incite workers to specialize, and the

number of firms employing the new technology increases. However, if products are enough

differentiated, the learning effect dominates. The wage gap is not sufficient to compensate

workers for the increased education cost, and the supply of specialized labor declines.

Despite the efficiency gains, few firms adopt the new technology. This result is consistent

with He et al. (2021), who find that banks operating in areas with more skilled labor are

less likely to spend in outsourced IT services, suggesting that skilled labor is a vehicle for

in-house development of new technologies.

This paper relates to the literature focusing on technology adoption under imperfect

competition (see Stoneman and Ireland, 1983). Some authors considered the role of un-

certainty in models of oligopolistic competition. Elberfeld and Nti (2004) noticed that

the uncertainty associated with the large investments required for the adoption of new

technologies, may decrease the number of innovating firms. Similarly, Zhang (2020) ana-

lyzed how different degrees of uncertainty may affect technology adoption.6 These papers

focus on the uncertainty associated with large investments to explain the slow adoption of

new technologies. Instead, we find that education costs can be an obstacle to technology

adoption even when there is no uncertainly at all.

Yeaple (2005) considers technology adoption in a monopolistic competition setup. He

shows that firms adopting better technologies pay higher wages and that international

trade increases the proportion of firms adopting the new technology. Bustos (2011) in-

cludes technology upgrading into the model developed by Melitz (2003), and shows that

trade liberalization fosters technology adoption. Neither of these papers accounts for

education choices. Unlike these contributions, we model technology adoption based on

endogenous education choices rather than uncertainty or trade liberalization.

We are not the first to focus on the role of education in technology adoption. Krueger

and Kumar (2004) find that education choices are one of the main factors explaining

6See also Zhang et al. (2014) and Hattori and Tanaka (2017).
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differences in technology-driven growth between the U.S. and Europe. However, they

assume that individuals have heterogeneous abilities that are uniformly distributed across

the population. Our paper shows that the the shape of this distribution can determine

the rate of technology diffusion. Caselli (1999) builds a growth model with technological

revolutions that are either: skill-biased or de-skilling. Education choices can have different

effects depending on the type of revolution. In contrast to his findings, we show that a

skill-biased technological revolution can also result in slower technology adoption. Our

paper also relates to Schivardi and Schmitz (2020), who show that ineffective management

explains a substantial part of the missing productivity growth in Southern Europe. In their

model, exogenous differences in management skills can have sizable effects on productivity.

Our analysis can provides a complementary explanation, as it links the productivity gains

from a new technology to skills and specialization costs.

The paper is organized as follows. Section 2 describes the model, Section 3 solves the

model for a given level of technology. Section 4 analyses technology adoption decisions

and Section 5 concludes.

2 The model

We model a small open economy in which monopolistically competitive firms produce for

foreign consumers.7 Local firms operate under increasing returns to scale using capital and

specialized labor. Wages depend on worker specialization, which can be improved through

education. We consider two levels of specialization (low and high), associated with two

different technologies that can be used for production (old and new). Accordingly, we will

examine how specialization decisions change when the efficiency of the new cost saving

technology increases.

7Assuming local consumers does not change the model results. All decisions regarding specialization
and technology adoption yield the same outcome even when the demand comes from local workers.
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2.1 International consumers

As in previous literature (see Forslid and Ottaviano, 2003), we consider a “Dixit-Stiglitz”

demand system, in which agents prefer to consume a diversified bundle of goods. There-

fore, the preferences of a representative consumer can be described by the following utility

function,

U =

(∫ n

0

c
σ−1
σ

i di

) σ
σ−1

, (1)

where ci is consumption of variety i, n is the mass of available varieties, and σ is the

elasticity of substitution between any two varieties. The size of the international de-

mand is exogenous and equal to I, which represents the income available to international

consumers. Without loss of generality we normalize I to 1.

2.2 Firms

As is standard in this type of setting, firms are characterized by monopolistic competition.

Production involves a fixed cost f ∈ R+ in terms of labor, and a constant marginal cost,

βi ∈ (0, 1], which depends on the technology employed by the firm.

Accordingly, the profit of firm i is:

πi = (pi − βi) · qi − w · f , (2)

where qi is the firm’s output and pi its unit price, while w is the wage. Each firm sets the

price of its variety to maximize profits, while due to free-entry no firm earns a positive

profit at the equilibrium.8

For simplicity, we consider two technologies (old and new) associated with marginal

costs βo and βn, with βn < βo. Throughout the analysis of Section 4, and without loss of

8We expect new firms to enter if the incumbent earns a positive profit. This happens until no firm
earns a positive profit. The scale of firms under free-entry is determined by the cost structure and the
elasticity of substitution. In our model, similar to Forslid and Ottaviano (2003), operating profits exactly
match the fixed cost paid in terms of labor.
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generality, we normalize βo to 1, so that βn = β ∈ (0, 1).9

2.3 Education decisions and technology efficiency

Workers are heterogeneous in their education cost, x ∈ [1,∞), which determines the

disutility z of acquiring specialized education as follows: z = (x − 1)/x. This is similar

to the approach in Delogu et al. (2018), as education costs enter logarithmically in the

utility function. In this way, z ∈ [0, 1] takes the value 0 when x = 1 and the value

1 when x → ∞. Each worker decides whether to invest in education based on the

(expected) utility of investing. Education costs are distributed according to a continuous

and differentiable distribution with cumulative distribution function (c.d.f.) F (x).

Although the new technology has the advantage of reducing marginal costs, it requires

firms to hire specialized labor Ln. In order to capture the idea that a more efficient

technology is more difficult to learn, we assume that the distribution of education costs

depends on the efficiency parameter β, so that F (x, β) with ∂F (x,β)
∂β

> 0. Accordingly, the

less efficient the technology (the higher the β), the higher the share of workers with low

specialization costs.

3 Analysis

In this section, we first discuss the case when only one technology is available for pro-

duction. This allows us to focus on production and consumption. Then, we consider the

model in which two technologies are available and analyze the workers’ education decision.

3.1 Consumption and production with a single technology

The representative international consumer maximizes utility subject to a budget con-

straint by choosing the amount of each variety i taking into account its price, pi.

9Elberfeld and Götz (2002) and Ago et al. (2017) made similar modelling choices.
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Formally,

max
{[ci]ni=0}

[∫ n
0
c
σ−1
σ

i di
] σ
σ−1

(3)

s.t. 1 =
∫ n

0
picidi

Accordingly, the demand for variety i is:

ci =
(pi
P

)−σ 1

P
, (4)

where P =
[∫ n

0
p1−σ
i di

] 1
1−σ is the price index.

Each firm sets the price of the variety it produces to maximize its profit (equation

(2)),

pi =
σ

σ − 1
βi . (5)

The optimal pricing strategy is a proportional mark-up on the marginal cost, indepen-

dent of other firms’ strategies. It follows from equation (5) that, the more efficient the

production technology (smaller βi), the lower the price. Therefore, as we will see in the

following section, varieties produced with more advanced technologies will be sold at a

lower price.

Finally, the free entry condition of zero profits determines the labor market wage,

πi = 0 −→ w =
qi(pi − βi)

f
. (6)

Notice that the efficiency of the production technology (i.e., decreasing βi) should have a

positive effect on wages. Therefore, if different technologies are available for production,

we will expect relatively higher wages paid by firms employing more advanced technolo-

gies. However, this is not apparent when only one technology is available. In this case,

every variety has the same price and will be consumed in equal amount (i.e., pi = p and

ci = c ∀i):

c =
p−σ

P 1−σ = f

(
σ − 1

σ

)
,
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given that p = σ
σ−1

βi, and P =
(∫ n

0
p1−σdi

) 1
1−σ . As a consequence, exploiting qi = ci = c

and plugging the previous result into equation (6) the equilibrium wage is:

w =
1

σ
. (7)

4 Consumption, production and education with two

technologies

In this section, firms can improve their efficiency by adopting the new cost-reducing

technology (recall that βn = β < βo = 1). However, as discussed in section 2.3, this

requires specialized (skilled) labor. The amount of specialized labor in the economy,

Ln ∈ [0, 1], is the outcome of the education choices of all workers, whose decision reflects

the net return to education (i.e., wage net of education costs).

Since firms producing with old and new technologies will offer different wages (i.e.,

wo and wn respectively), workers will only specialize in the new technology if this entails

sufficient benefit. Workers are heterogeneous in their education costs x, and we also

assume that these costs increase with the efficiency of the new technology (lower β) (see

section 2.3).

Formally, workers will invest in education if and only if:

ln (wn) + ln (1− z) > ln (wo) . (8)

Exploiting the fact that z = (x− 1)/x, we identify the marginal condition:

x∗ =
wn
wo

, (9)

such that all workers facing a smaller cost (x ≤ x∗) invest in education, and all workers

with higher costs (x > x∗) do not invest in education. Normalizing the total labor
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endowment to 1, the threshold in equation (9) yields

Ln = 1−
∫ ∞
x∗

f(x)dx = F (x∗, β) , (10)

while Lo = 1− Ln represents the supply of unspecialized labor.

Varieties produced with the same technology are sold at the same price. Hence, we

can write the price index as P = (nop
1−σ
o + nnp

1−σ
n )

1
1−σ . Unspecialized workers will be

employed by firms using the old technology and receive a wage wo, whereas specialized

workers receive a wage wn. Using equations (4) and (5) and the price index, we get:

wo =
1

σ (Lo + Lnβ1−σ)
and wn =

1

σ (Loβσ−1 + Ln)
. (11)

Therefore, the wage ratio is constant and solely determined by the efficiency of the new

technology and the elasticity of substitution σ,

x∗ =
wn
wo

= β1−σ . (12)

Please note that wages wo and wn are both endogenous and function of the labor supply

of specialized and unspecialized workers. In our setting, the parameter β also determines

how specialized labor supply responds to the wage ratio. In particular, given that ∂F
∂β

>

0, other things equal, new technologies that are only marginally more productive and

therefore easier to learn induce larger shares of specialized workers.

The wage ratio determines how many firms will produce with the new technology. If

Ln workers are employed using the new technology, the number of produced varieties is

no + nn = Lo+Ln
f

.

The following proposition links the relative efficiency of the new technology to the

share of specialized labor, and shows that this link is determined by the elasticity of

substitution σ.
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Proposition 1. The share of specialized labor, Ln, can either increase or decrease with

the relative efficiency of the new technology depending on the elasticity of substitution, σ.

In particular, there exists a threshold value σ̂ such that:

(i) If σ > σ̂, the share of specialized workers increases with the efficiency of the tech-

nology (i.e., decreases with β);

(ii) If σ < σ̂, the share of specialized workers decreases with the efficiency of the tech-

nology (i.e., increases with β).

Proof. See Appendix A.1.

Proposition 1 follows from the marginal effect of an increase in the technology efficiency

(a decrease in β) on the volume of specialized labor Ln:

−∂Ln
∂β

= −∂F (x, β)

∂β
=
dF (x, β)

dx

σ − 1

βσ︸ ︷︷ ︸
wage effect

− dF (x, β)

dβ︸ ︷︷ ︸
learning effect

(13)

In particular, an increase in the technology efficiency (lower β) has two opposing

effects.

On the one hand, a positive wage effect follows from the fact that a decrease in

β creates a larger wage ratio, resulting in a larger share of workers wanting to invest

in specialized education. Note that, for any given distribution of education costs, this

positive wage effect is stronger when the products are less differentiated (higher σ).10

On the other hand, there also exists a negative learning effect, since the technology

efficiency affects the distribution of the costs faced by workers, decreasing the incentive

to invest in education and, therefore, the share of specialized workers.

The elasticity of substitution plays a fundamental role in determining which effect

dominates. In fact, the wage effect dominates when the elasticity of substitution is suf-

ficiently large (see Figure 1, top panel). The intuition is similar to that given by Melitz

10Notice that dF (x,λ)
dx depends on the threshold x∗, which is increasing in σ.
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(2003). As σ increases, firms producing with the new (more efficient) technology enjoy

higher revenues due to the market share they are able to steal from less efficient firms.

This allows them to pay higher wages relative to less efficient firms. This results in a

larger wage ratio wn/wo, magnifying the positive wage effect as the return to education

increases. However, when the elasticity of substitution is relatively small, the learning

effect prevails, and technology adoption declines due to a shortage of specialized labor.

(see Figure 1, bottom panel).
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β > β′

x1

0

1

F (x, β)

F (x, β′)

Ln

L′n

β1−σ β′1−σ

Learning Effect
Wage Effect

x

β > β′

1

0

1

F (x, β)

F (x, β′)

Ln

L′n

β1−σ β′1−σ

Learning Effect

Wage Effect

Figure 1: Top Panel – high σ: the wage effect dominates the learning effect. Bottom Panel – low σ: the
learning effect dominates the wage effect.

14



The threshold value σ̂ depends on the distribution of education costs. To illustrate

the role of product differentiation, we consider two conventional distributions of education

costs.

Pareto distribution. This distribution has often been used in previous literature, e.g.,

Delogu et al. 2018. In the Pareto distribution of the type

F (x;λ) = 1−
(

1

x

)λ
, (14)

the parameter λ measures the relative size of the tails, with higher values of λ corre-

sponding to a higher mass of workers with high education cost. To be consistent with

our assumption in section 2.3, we relate the shape parameter λ to the efficiency of the

technology as follows: λ = β
1−β , so that ∂F (·)/∂β > 0. We can conclude the following:

Corollary 1. If education costs are Pareto distributed, a more efficient technology reduces

the share of specialized workers.

Proof. See Appendix A.2.

Corollary 1 highlights the fact that with a Pareto distribution, the learning effect

always offsets the wage effect. As we show in the appendix, this behavior can be explained

by the fact that the wage effect is proportional to the learning effect, scaled by (1−β)2

− log(β)
< 1.

Shifted exponential distribution. Let us consider an exponential distribution of the

type:

F (x;λ) = 1− e−λ(x−1). (15)

Since the role of λ in the exponential and Pareto distributions has a similar interpretation,

we can assume the same relationship between λ and β (i.e., λ = β
1−β ). Compared to the

case of the Pareto distribution, when the education costs are distributed according to a

shifted exponential the learning effect does not seem as relevant due to the fast increase
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of the c.d.f.. In this way, a change in the wage ratio is more effective in increasing the

share of specialized workers.

Corollary 2. If education costs are distributed according to an Exponential distribution,

an increase in production efficiency translates into more specialized labor if σ > σ̂ = 2

(less if σ < 2).

Proof. See Appendix A.3.

In the case of the exponential distribution, the positive wage effect prevails if products

are less differentiated. When the elasticity of substitution is high enough (σ > 2), the

wage effect prevails and a more efficient technology yields a higher return to education,

increasing the supply of specialized labor.

To better grasp the impact of the distribution of education costs, Figure 2 depicts the

inverse of the wage ratio wo/wn and the share of specialized workers, when σ < 2 (left

Panel), and σ > 2 (right Panel). When education costs are Pareto distributed, σ has

only a limited impact on the share of specialized labor at different levels of β. This share

(LParn as indicated in Figure 2) is always increasing in β. However, when education costs

are exponentially distributed the share of specialized labor, Lexpn , increases with β for low

elasticities of substitution (left panel), while it decreases for high values of σ (right panel).

When products are sufficiently differentiated (low σ), a more efficient technology induces

less workers to invest in specialized education. This is because the positive demand effects

induced by a more efficient technology are not enough to compensate for the increased

specialization cost.11

11We do not show the case of σ = 2, in which LExpn is represented by a flat horizontal line.
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β0

wo
wn
, LParn , LExpn

wo/wn

LParn

LExpn

1

1

β0

wo

wn
, LParn , Lexpn

LParn

LExpn

1

wo/wn
1

Figure 2: Left Panel: Wage ratio wo/wn, share of specialized workers under the Pareto distribution
LParn and under the Exponential distribution LExpn with σ < 2. Right Panel: Wage ratio wo/wn, share
of specialized workers under the Pareto distribution LParn and under the Exponential distribution LExpn

with σ > 2.

5 Conclusions

Starting from the observation that firms often report shortages of skilled labor as a limit

to technology adoption, this paper develops a tractable model linking education choices to

technology diffusion. Employing a new technology often requires specialized labor, which

can only be trained through costly education. Assuming that this cost increases with the

potential improvements of new technologies, we link the efficiency of the new technology

to the effort required to acquire the necessary skills.

This allows us to identify two opposing forces acting on education incentives, which

determine the rate of technology adoption. On the one hand, a more efficient technology

implies a larger wage ratio, encouraging skill accumulation (positive wage effect). On the

other hand, since higher efficiency increases the average specialization cost, it also reduces

the share of specialized workers (negative learning effect). When the learning effect domi-

nates, labor shortages curb technology adoption. In line with empirical evidence, Beneito

et al. (2015), our paper shows that the degree of differentiation is an important determi-

nant of technology adoption. In particular, we show that the learning effect dominates

when products are sufficiently differentiated.
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Our findings suggest that in sectors where competition is low, more firms may fail

to adopt more efficient technologies because high product differentiation compresses the

wage premium, reducing incentives for specialization. This result is consistent with survey

evidence reporting that shortages of specialized workers act as an obstacle to technology

adoption. Better education policies, such as subsidizing specialization costs, can counter

this adverse effect and foster the adoption of more efficient technologies.
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A Appendix

A.1 Proof of Proposition 1

Taking the total derivative of F (x∗, β) we get the following,

dF (x∗, β) =
∂F (x∗, β)

∂x∗
dx∗ +

∂F (x∗, β)

∂β
dβ .

Exploiting the fact that

dx∗ = (1− σ) β−σdβ

we have

dF =

(
−∂F (x∗, β)

∂x∗
σ − 1

βσ
+
∂F (x∗, β)

∂β

)
dβ . (A.1)

Therefore, the sign of dF/dβ depends on what is inside the brackets of equation A.1.

Notice that

sign

(
∂F (x∗, β)

∂x∗

)
= sign

(
∂F (x∗, β)

∂β

)
> 0 .

Hence, ∂F (x,β)
∂β

≥ 0 if

σ − 1

βσ
≤

∂F (x,β)
dβ

∂F (x,β)
∂x

. (A.2)

The LHS of inequality (A.2) is monotonically increasing in σ. Therefore, there exists a

threshold value σ̂ such that condition (A.2) holds with equality and below which ∂Ln
∂β

> 0.

A.2 Proof of Corollary 1

Pareto distribution. Plugging equation (14) into equation (A.2) and considering that

λ = β
1−β , equation (A.2) reduces to:

σ − 1 ≤ log (βσ−1)

β − 1
, (A.3)

which is always verified when σ > 1 .
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A.3 Proof of Corollary 2

Exponential distribution. Taking equation (15) and using the fact that λ = β
1−β , we obtain:

∂F (x, λ)

∂x
= λeλ(−(x−1)) (A.4)

and

∂F (x, λ)

∂λ
= (1− x)

(
−eλ(−(x−1))

)
. (A.5)

Plugging into (A.2) equations (A.4) and (A.5) together with equation (9), we get:

σ − 1 ≤ (β − βσ)

β(1− β)
, (A.6)

which is verified only if σ < 2 .
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