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Abstract 
 
The estimation of banks’ marginal probabilities of default using structural credit risk 
models can be enriched incorporating macro-financial variables readily available to 
economic agents. By combining Delianedis and Geske’s model with a Generalized 
Dynamic Factor Model into a dynamic t-copula as a mechanism for obtaining banks’ 
dependence, this paper develops a framework that generates an early warning indicator 
and robust out-of-sample forecasts of banks’ probabilities of default. The database 
comprises both a set of Luxembourg banks and the European banking groups to which 
they belong. The main results of this study are, first, that the common component of the 
forward probability of banks’ defaulting on their long-term debt, conditional on not 
defaulting on their short-term debt, contains a significant early warning feature of interest 
for an operational macroprudential framework driven by economic activity, credit and 
interbank activity. Second, incorporating the common and the idiosyncratic components 
of macro-financial variables improves the analytical features and the out-of-sample 
forecasting performance of the framework proposed. 
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I. Motivation 
 
A relatively broad characterization of the objective of macroprudential policy is to limit 
systemic risk so as to minimize the costs of financial instability on the economy (ECB, 
June 2010). The literature on financial system risk has made a distinction between three 
different sources of systemic risk (ECB, December 2009): first, the exposure of all 
financial institutions to common, simultaneous macro-financial shocks; second, the 
sequential contagion from an idiosyncratic shock affecting a financial institution that 
spreads to other financial institutions and eventually to the real sector of the economy 
and; third, financial imbalances that build up over time and may unravel in a disorderly 
manner. Limiting financial systemic risk requires having indicators that provide a 
measure, albeit “fuzzy”, of financial stability, and a set of instruments to maintain and 
restore financial stability, when it is perturbed (Borio and Drehmann, 2009). Like the 
sources of systemic risk, indicators of systemic risk cover the cross-sectional dimension 
of systemic risk (e.g., Segoviano and Goodhart, 2009) and the time-dimension of 
systemic risk (e.g., Borio and Lowe, 2002). This paper contributes to several strands of 
the literature on both dimensions of systemic risk. Its objective is to develop a framework 
that generates an early warning indicator of overall credit risk in the banking sector that 
identifies as early as possible the build up of endogenous imbalances; that recognizes 
exogenous shocks timely; that factors in some manner dependence among financial 
institutions and; that provides robust out-of-sample forecasts of probabilities of default.1 
 
One of the biggest challenges for credit risk models is modelling dependence between 
default events and between credit quality changes. Dependence modelling is necessary 
to understand the risk of simultaneous defaults, the ensuing distribution of losses and 
the effects on financial stability. Failing to account for dependence, therefore, 
underestimates potential losses (Lando, 2004). This is crucial for meaningful stress 
testing exercises, for instance, as well as more generally, for the development of 
measures of systemic risk. To incorporate dependence, there are basically three broad 
approaches or mixtures of them: (1) to let probabilities of default be affected by common 
underlying observable variables; (2) to let probabilities of default be affected by 
underlying latent variables and; (3) to let direct contagion from a default event affect 
other firms. However, whether by using a mixture of distributions to model dependence 
or by using copula or network analysis, models require the estimation of default 
probabilities as a first step. This study uses two of the structural credit risk models 
studied in Jin and Nadal De Simone (2011a) and Jin et al (2011b), Merton (1974) model 
and Delianedis and Geske (2003) model, to estimate implied neutral probabilities of 

                                                
1 The issue of financial institutions’ contributions to systemic risk is not addressed in this paper, but in an 
accompanying study. 
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default. To model dependence among financial institutions’ default probabilities, this 
paper uses the Generalized Dynamic Factor Model (GDFM) of Forni et al (2005), which 
has been used extensively to exploit the information from a large dataset and also for 
forecasting (e.g., Kabundi and Nadal De Simone, 2011, De Nicolò and Lucchetta (2012), 
and D’Agostino and Giannone, forthcoming).2 However, Forni et al (2003) forecasting 
method is not easily applicable to a large number of underlying assets simultaneously, 
and does not generate the distributions of forecasts. As a result, this paper introduces a 
novel approach that combines the GDFM with a dynamic t-copula to improve the GDFM 
forecasting capacity.  
 
Copula theory provides an easy way to deal with (otherwise) complex multivariate 
modeling (Jin and Lehnert, 2011). The advantage of the copula approach is its flexibility, 
because the dependence structure can be separated from the univariate marginal 
components, and hence the dependence structure between these marginal components 
can be modeled in the second stage, after the univariate distributions have been 
calibrated. Therefore, the copula approach provides a robust and consistent method to 
estimate banks’ dependence. Correlation analysis, which usually refers to linear 
correlation, depends on both the marginal distributions and the copula, and is not a 
robust measure given that a single observation can have an arbitrarily high influence. 
The conditional dynamic t-copula is relatively easy to construct and simulate from 
multivariate distributions built on marginals and dependence structure. In fine, the 
GARCH-like dynamics in the copula variance and rank correlation offers multi-step-
ahead predictions of the estimated GDFM common and idiosyncratic components 
simultaneously. 
 
The framework of this study, therefore, shares the main core features suggested for an 
appropriate measure of systemic risk according to Schwaab et al (2010): a broad 
definition of systemic risk such as the ECB’s, an international focus, the incorporation of 
macroeconomic and financial conditions, unobserved factors, and the calculation of 
probabilities of defaults. 
 
The main results and contributions of this paper to the time-dimension of systemic risk 
are, first, to show that the common component of the forward probability of banks’ 
defaulting on their long-term debt, conditional on not defaulting on their short-term debt, 
contains a significant early warning feature of interest for an operational macroprudential 

                                                
2 Mechanisms for obtaining default dependence are versions of, and possible mixtures of three issues: (1) 
PDs are influenced by common observable variables and there must be a way of linking the joint movement 
of a reduced set of factors and how PDs depend on them; (2) PDs depend on unobserved background 
variables and credit events result in an update of the latent variables which updates PDs and; (3) direct 
contagion from a credit event. 
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framework mostly driven by measures of economic activity, credit growth and interbank 
activity. This is in the tradition recently surveyed by Frankel and Saravelos (2010). As 
such, the proposed framework measures the relative riskiness of the system in a non-
crisis mode. It becomes a useful macroprudential gauge to help policymakers decising 
when and what remedial actions to take as systemic risk increases over time. Second, 
that incorporating the common and the idiosyncratic components of macro-financial 
variables improves the analytical features of the framework proposed, in agreement with 
recent work by Koopman et al (2010) and Schwaab et al (2010). Finally, and a novel 
contribution, the paper’s framework produces robust out-of-sample forecasting of overall 
banking sector credit risk, especially at the individual bank level.  
 
The remainder of the study is organized as follows. Next section introduces a novel 
integrated modeling framework, and explains how to combine the GDFM with a dynamic 
t-copula into a dynamic forecasting framework of default probabilities. Section III 
discusses the data, and section IV examines the empirical results. Section V concludes.  
 
II. An Integrated Modeling Framework 
 
The purpose of this framework is to break down complex information into several smaller, 
less complex and more manageable sub-tasks that are solvable by using existing tools, 
and then combining their solutions in order to solve the original problem. 
 
The decomposition approach is frequently used in statistics, operations research and 
engineering. For example, decomposition of time series is considered to be a practical 
way to improve forecasting. The usual decomposition into trend, cycle, seasonal and 
irregular components was motivated mainly by business analysts, who wanted to get a 
clearer picture of the state of the economy (Fisher, 1995). Ideally, the selected models 
are expected to be integrated into the same theoretical framework. However, the models 
are developed to solve specific questions from different strands of literature. For instance, 
the structural credit risk model is a model for assessing credit risk typically developed 
from option pricing literature; dynamic factor models have become a standard 
econometric tool to perform factor analysis on large datasets for measuring 
comovements in, and forecasting of macroeconomic time series; copulas are a 
fundamental tool for modeling multivariate distributions, which is extremely useful for 
active risk management. Despite the difficulties involved in integrating these models, 
there are already some examples of using the existing tools together one way or another. 
For example, De Nicolò and Lucchetta (2012) use a dynamic factor model with many 
predictors combined with quantile regression techniques. Alessi, Barigozzi and Capasso 
(2007a&b) propose two new methods for volatility forecasting, which combine the GDFM 
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and the GARCH model, and have been proved to outperform the standard univariate 
GARCH in most cases by exploiting cross-sectional information. 
 
This paper presents an integrated framework which examines credit risk emanating from 
the macro environment and from banks’ interconnectedness. The first contribution of the 
paper is to generate an early warning framework that in the tradition of Borio and Lowe 
(2002), associates the buildup of banking sector vulnerabilities with the real economy 
cycle and credit growth. The text graph illustrates the information flow of the first part of 
this framework:  
 

 
 
1. The market-based / book value-based Merton and Delianedis and Geske models 

are used to filter out the tail risks or the probabilities of distress (probabilities of 
default or PDs, and  distance to default or DD); 

2. The probabilities of distress together with a large database of macro-financial 
variables are decomposed into common components and idiosyncratic 
components by the GDFM; 

3. Those components are then broken down into their means and volatilities by the 
marginal dynamics of AR-GARCH models. For the in-sample estimation, a zero 
mean is assumed for the common components in order to keep their multi-step-
ahead prediction from the GDFM; 

4. The standardized residuals from the marginal dynamics, which are )1,0(iid  

usually with skewness and fat tails, are glued together by a dynamic t-copula with 
a multivariate GARCH structure;3 

                                                
3 The converse of Sklar’s theorem implies that it is possible to couple together any marginal distributions, of 
any family, with any copula function and a valid joint density will be defined. The corollary of Sklar’s theorem 
is that it is possible to extract the implied copula and marginal distributions from any joint distribution (Nelsen, 
1999). This framework alleviates the statistical inefficiency associated with the fact that PDs (and DD) are 
generated regressors. 
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5. By the copula approach, the standardized residuals can be further decomposed 
into two subsets of information: (i) information of each random variable; i.e., the 
marginal distribution of each variable; and (ii) information about the dependence 
structure (nonlinear) among the random variables. 

 
The second main contribution of this paper is to advance a dynamic forecasting 
framework of credit risk for each bank by simulation from multivariate distributions built 
on marginal distributions and dependence structure. As shown by the following text 
graph, the simulation is actually an information loading process through the dynamic 
structures built in the first step.  The forward dependence information is first generated 
from a multi-student’s t copula, and then marginal information is loaded up to get the 
forward standardized residuals. The forecasted common components and idiosyncratic 
components are projected by plugging-in marginal dynamics which enables customizing 
the information of means and volatility clusters. Last, the forecasted marginal credit risk 
measures are the sum of these two components. Thus, reverse engineering uncovers 
the tail risk or the probabilities of distress by using not only information from individual 
banks, but also from a large data set of macro-financial variables. 
 

 
 
The remainder of this section reviews the methodological and statistical approaches 
used to estimate credit risk. First the selected models to estimate default probabilities 
are briefly described, and then the GDFM to nest macro-financial variables is outlined. 
Last, the multivariate GARCH techniques are extended into the t-copula to introduce the 
dynamic forecasting framework.  
 
1. Selected models to estimate default probabilities 
 
In order to develop tools to measure and assess financial stability it is necessary to 
characterize instability. Approaches to deal with instability include, for instance, 
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modelling financial institutions’ default, analysing the financial system using extreme 
value theory, and allowing for episodes of market illiquidity. The approach taken in this 
study instead is to apply contingent claim analysis to the analysis and measurement of 
credit risk, or as it is commonly referred to, structural credit risk modeling. Structural 
credit risk models attempt to assess the creditworthiness of a firm by modeling the 
evolution of the firm’s asset values as a stochastic process, and by viewing bankruptcy 
as an endogenous random event linked to the value of the firm’s assets.  
 
1.1. The Merton Model  

 
In the Merton model, equity owners are viewed as holding a call option on the firm’s 
value after outstanding liabilities have been paid off. They have the option to default if 
the firm’s asset value falls below the present value of the notional amount—or book 
value—of outstanding debt (“strike price”) owed to bondholders at maturity. In other 
words, when the market value of the firm’s assets is less than the strike price, the value 
of equity is zero. Similarly, bond holders are viewed as writing a European put option to 
equity owners, who hold a residual claim on the firm’s asset value if the firm does not 
default. Bond holders receive a put option premium in the form of a credit spread above 
the risk-free rate in return for holding risky corporate debt (and bearing the potential loss) 
due to equity owners’ limited liability.  
 
According to the Merton model, the market value of a firm’s underlying assets follows a 
geometric Brownian motion (GBM) of the form: 
 

dWVdtVdV AAAA σµ +=  

 
where AV  is the firm’s assets value, with an instantaneous drift µ  (the expected rate of 

return of the firm), and an instantaneous asset return volatility Aσ . W is a standard 

Wiener process. If X  is the book value of the debt which is due at time T, Black and 
Scholes’ formula provides the market value of equity, EV :  

 

)()( 2
)(

1 dNXedNVV tTr
AE

−−−=  

 

where 
tT

tTr
X
V

d
A

A
A

−

−++
=

σ

σ ))(
2
1()ln( 2

1 , tTdd A −−= σ12  , r is the risk-free rate, and ()N  is 

the cumulative density function of the standard normal distribution. The PD of the firm is 
the probability that its assets’ value will be less than the book value of its liabilities. The 
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corresponding implied neutral PD is )( 2dNN −=π . The “actual” PD is )( DDNA −=π , 

where the distance-to-default, DD, is simply the number of standard deviations that the 
firm is away from default: 
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To get to “actual” PDs from neutral PDs, the latter must be adjusted by the market price 
of risk, which is estimated using a capital-asset pricing model in this study:

 
rruu M

M

A
MA +−= )(, σ
σ

ρ , where Mσ is market asset return volatility, and MA,ρ  is the 

correlation between firm’s asset return and market asset return. Alternatively, historical 
recovery rates can be used to move from risk neutral to “actual” PDs. The derived 
“actual” PDs, however, could be still much higher than the observed PDs, the so-called 
"credit spread puzzle" (Huang and Huang, 2003). Moody’s KMV, instead, maps distance 
to default (DD) into historical default probabilities. Chen, Collin-Dufresne and Goldstein 
(2009) try to adjust the level by calibrating the pricing kernel to equity returns and 
aggregate consumption. Fortunately, the rankings are more meaningful than the levels, 
given the objective of this study. A complication of CCA to calculate PDs is that the 
dynamics of the underlying asset value is not directly observable. To calculate Aσ , 

Moody’s KMV iterative procedure is used.4 For quoted financial institutions, the KMV 
approach implies taking daily equity data from the past 12 months to calculate historical 
assets volatility.5 Regarding the value of debt, the KMV approach takes all debt due in 
one year, plus half of the long-term debt. The KMV method is a simple two-step iterative 
algorithm to solve for assets volatility. The procedure uses an initial guess for volatility to 
determine the asset value and to de-lever the equity returns. The volatility of the 
resulting asset returns is used as the input to the next iteration of the procedure which, in 
turn, determines a new set of asset values and hence a new series of asset returns. The 
procedure continues in this manner until it converges. 
 
1.2. The Delianedis and Geske Compound Option-based Risk Model 

  
Debt maturity influences liquidity risk and PDs. However, Merton model and most credit 
risk models consider only a single debt maturity. This is an important drawback for a 

                                                
4 Duan et al, (2004) show that the KMV estimates are identical to maximum likelihood estimates (MLE). 
5 See next sub-section for the approach followed in the case of Luxembourg banks for which quoted stock 
prices or options on stock are not available. 
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central bank or a supervisor interested in assessing and tracking banks’ solvency. Geske 
(1977) and Delianedis and Geske (2003) consider a multi-period debt payment 
framework to which they apply compound option theory. This enables to account for the 
influence of the time structure of debt on the estimated PD. 
  
Assume that a bank has long term debt, 2M , which matures at date 2T , and short term 

debt, 1M , which matures at date 1T . Between 1T and 2T , the Merton model is valid as the 

bank’s equity equals a call option giving the shareholder the right to buy the bank at the 
second payment date, 2T , by paying the strike price 2M . If at date 1T , the call option with 

the bank’s value V  equals at least the face value of the short term debt, 1M :  

 

)()( 2
)(

21221
121 kNeMTTkNVM TTr

A
F −−−−+= σ  

 
then the bank can roll over its debt. So, the refinancing problem, the right to buy the 
simple call option of the second period by paying the strike price at the first payment 
date, is exactly a compound option as follows: 
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The richness of the model allows to calculate the following risk neutral PDs: (1) the total 
or joint probability of defaulting at either date 1T  or date 2T , i.e., );,(1 212 ρkkN− ; (2) the 

short-run probability of only defaulting on the short-term debt at date 1T , i.e., 

)(1 1kN− and; (3) the forward probability held today of defaulting on the long-term debt at 

date 2T , conditional on not defaulting on the short-term debt at date 1T , i.e., 

)(
);,(1

1

212

kN
kkN ρ

− . Similar to the Moody’s KMV iterative procedure, the Delianedis and 

Geske model is estimated by the two-step iterative algorithm. Regarding the maturity of 
the debt value, this study takes all short term obligations due in one year as a one-year 
maturity debt, and all long-term debt as a ten-year maturity debt. 
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1.3. The Book Value-Based Merton and Delianedis and Geske Models 
 
As Luxembourg bank subsidiaries are not publicly quoted, an alternative approach to 
calculate PDs has to be followed. Hillegeist at al. (2004) demonstrate that the market-
based Merton’s PD provides significantly more information about the probability of 
bankruptcy than do the popular accounting-based measures. However, Bharath and 
Shumway (2008) also examine the accuracy and PDs forecasting performance of the 
Merton model and find that most of its predictive power comes from its functional form 
rather than from the estimation method: the firm’s asset value, its asset risk, and its 
leverage. In an application to Brazilian and Mexican banks, Souto et al (2009) and Blavy 
and Souto (2009), respectively, show that the book-based Merton’s credit risk measures 
are highly correlated with market-based Merton’s credit risk measures.6 This suggests 
that banks’ financial statements are a crucial piece of information when forming market 
expectations about the probability of banks’ default. Regarding the estimation of volatility, 
in empirical work, a dynamic volatility model is often preferred in order to track risks 
more timely. However, most dynamic volatility models require many more data points 
than are available for Luxembourg banks. The RiskMetrics (RM) filter/model instead 
assumes a very tight parametric specification. The book value asset RM variance can be 
defined as: 
 

t
BB

t
B
tt

B hVVh ζζ +−= −+
2

11 ))/)(ln(1(  
 

where the variance forecast B
th 1+  for period t+1 is constructed at the end of period t using 

the square of the return observed at the end of period t as well as the variance on period 
t. Although the smoothing parameter ζ may be calibrated to best fit the specific historical 

returns, RiskMetrics often simply fixes it at 0.94. To avoid the calibration difficulties for 
our limited data points, ζ  is also assumed to be same for all banks, and estimated by 

numerically optimizing the composite likelihoods (Varin et al, 2011), here the sum of 
quasi maximum likelihood functions of the estimation sample over all banks 
simultaneously: 
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6 See also Gray and Jones, 2006, for an early application of this idea. 
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where N is number of banks, and there is a time series of  T observations for each banks. 

The recursion is initialized by setting the initial B
0σ  equal to the first year book value 

asset volatility, and the means of quarterly assets returns in a large sample are assumed 
to be zeros to avoid the noises brought by the sample means to the RM variance 
process. The estimated value of ζ  is 0.83. 

 

In order to have a more forward-looking measure, the variance forecast 1+t
Bσ  can be 

used to calibrate PDs at time t. The book-value risk neutral PDs of the Merton model can 
be directly estimated by: 
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Similarly the three book-value risk neutral PDs of the Delianedis and Geske model can 
be estimated by substituting BV  and Bσ  into 1k and 2k  in the Geske model. Given Bσ , 

the critical book value of total assets 
B

V at 1T  is calculated first. Similarly, this study 

takes all short term debt due in one year as a one-year maturity debt, and all long-term 
debt as a ten-year maturity debt. 
 
2. The Generalized Dynamic Factor Model 

 
In recent years, large-dimensional dynamic factor models have become popular in 
empirical macroeconomics. The GDFM enables the efficient estimation of the common 
and idiosyncratic components of very large data sets. The GDFM assumes that each 
time series in a large data set is composed of two sets of unobserved components. First, 
the common components, which are driven by a small number of shocks that are 
common to the entire panel—each time series has its own loading associated with the 
shocks. Second, the idiosyncratic components, which are specific to a particular variable 
and orthogonal with the past, present, and future values of the common shocks. The 
common component of PDs is best viewed as the result of the underlying unobserved 
systemic risk process, and it is thus expected that it will be relatively persistent. The 
idiosyncratic component instead reflects local aspects of credit risk that while far from 
negligible, especially in the short term, are transient.  
 

Assume a vector of n series expressed as i
tt

ii
t vuLx += )(α  where ( )ʹ′= n

tttt xxxx ,...,, 21  is 

a n-dimensional vector of stochastic stationary process with zero mean and variance 
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1; ( )ʹ′= q
tttt uuuu ,...,, 21  is a q-dimensional vector of mutually orthogonal common shocks 

with zero mean and unit variance, and with nq <  ; ( )ʹ′= ,,...,,, 21 n
tttt vvvv  is a n-

dimensional vector of idiosyncratic shocks; and  )'(Liα is a )( qn × matrix of rational 

functions with the lag operator L. The model allows for correlation between i
tv  variables, 

but the variances of i
tv  bounded as ∞→i . When n is large, the idiosyncratic 

components, which are poorly correlated, will vanish, and only the common components 
will be left, and thus they will be identified (see Forni and others, 2000, for a technical 
proof). 
 
The GDFM model is estimated using the one-sided estimator proposed by Forni et al 
(2005). The procedure comprises two steps: first, estimating the spectral density matrix 

of the vector stochastic process i
tx and, second, using the calculated q largest (real) 

eigenvalues—and their corresponding eigenvectors—of the spectral density matrix to 

estimate the generalized common components. In this study, the i
tx )( nt ×  vector 

stochastic stationary process has t = 93 monthly observations and n includes 283 market 
indexes and macroeconomic variables for Euro area, Belgium, Canada, Denmark, 
France, Germany, Greece, Japan, Netherland, Italy, Spain, Sweden, Switzerland, United 
Kingdom, United States, and Luxembourg. Adding the macroeconomic variables to the 
PDs, there are 496 (354) series for Delianedis and Geske’s (Merton’s). The number of 
dynamic factors is q = 3 underlying PDs or DD. Accordingly, there are 496 (354) 

idiosyncratic shocks. In the )'(Liα  )( qn × matrix of rational functions with the lag 

operator L, the number of lags is 2, and total the number of static factors is 9.7  
 
Since the common factors are derived on the standardized first difference of PDs or DD, 
the accumulated common component is constructed from the initial PDs or DD, and the 
standard deviation (STD) and mean (M) of the first difference of PDs or DD. For example, 

in the case of PDs, dCCAccumulate
tti

dCCAccumulate
t PDsSTDuLMPDs 1)( −++= α , and 

10 PDsPDs dCCAccumulate = . Therefore the accumulated common component shows the 

hypothetical evolving path of credit risk if purely driven by the common factors. The 
accumulated idiosyncratic component is simply the residual risk between PDs or DD and 
its accumulated common component. The correlation between the accumulated 

                                                
7 See Hallin and Liska (2007) for the log criterion to determine the number of dynamic factors, and Alessi, 
Barigozzi and Capasso (2009), who modify Bai and Ng (2002) criterion for determining the number of static 
factors in a more robust manner. 
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common component and the accumulated idiosyncratic component can be statistically 
significant even the idiosyncratic component is orthogonal with the common factors. 
 
3. A Dynamic Forecasting Framework 
 
Forni et al (2005) provide a good framework for multi-step-ahead predictions of the 
common component. Nevertheless, the idiosyncratic (credit risk) component also plays 
an important role for financial instability, which cannot be neglected (see Schwaab et al, 
2010). The idiosyncratic component is in general autocorrelated and therefore can be 
predicted. Forni et al (2003) construct a linear forecasting model with the 
contemporaneous common component and the lagged idiosyncratic component. 
However, their forecasting method is not easily applied to a large number of underlying 
assets simultaneously, and also does not generate the distribution of these forecasts. 
The input to the GDFM is a vector of stochastic covariance-stationary processes with 
zero means and finite second-order moments. However, currently there is no structural 
credit risk model directly combined with the GDFM. Therefore, the standardized first 
difference of PDs or DD (difference stationary processes) can be regarded as 
exogenous inputs to the GDFM. The common and idiosyncratic components are 
assumed to be asymptotically stationary and orthogonal to each other, whereas the 
idiosyncratic component can be mildly cross-correlated. Similar to the algorithms for 
combining GDFM and GARCH in Alessi, Barigozzi and Capasso (2007a&b), this study 
introduces a novel approach to combine the GDFM with a dynamic t-copula. The AR (or 
zero mean)-GARCH model can be applied to both the common components and the 
idiosyncratic components for all variables. Afterwards, a dynamic t-copula is used to glue 
together the standardized residuals or innovations from those marginal components. 
Formally, the dynamic forecasting model becomes: 
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where the forecast F
tX 1+ of the marginal credit risk is the sum of its forecasted common 

component FCC
tX

_
1+ and idiosyncratic component FIC

tX
_
1+ ; ti

CC
t uLX )(α=  is the common 
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component, and i
t

IC
t vX =  is the idiosyncratic component from the GDFM. Both common 

and idiosyncratic components are simply assumed to follow a GARCH (1,1) process. 

The mean of FCC
tX

_
1+  is the prediction of the common component FGDF

tX
_

1+ by the GDFM 

as in Forni et al (2005), whereas the mean of FIC
tX
_
1+  is an autoregressive process of 

order p, AR (p). The multivariate distribution ),...,,( 2
1

2
1

1
1

n
tttF +++ εεε for i=1,2,...,2n, which 

includes standardized residuals from both the common and the idiosyncratic 
components and has a time-varying t-copula form.  
 
The copula is a fundamental tool for modeling multivariate distributions. It provides a 
robust method of consistent estimation for dependence, and is much flexible. Correlation, 
which usually refers to Pearson’s linear correlation, depends on both the marginal 
distributions and the copula, is not a robust measure given that a single observation can 
have an arbitrarily high influence on it. Instead, using the conditional dynamic copula, it 
is relatively easy to construct and simulate from multivariate distributions built on 
marginal distributions and dependence structure. Drawing on Jin and Nadal De Simone 
(2011a), a PD index of banking sector overall credit risk is constructed aggregating the 
individual banks’ PD estimates weighted by, say, their respective implied asset values.8 
The following sections explain in detail the modelling of marginal dynamics, dynamic t-
copulas, and forward simulation procedures.  
  
3.1. Modelling Marginal Dynamics 
 
This study does not specify marginal distributions, but adopts a semi-parametric form for  
the marginal distributions. Misspecification of marginal distributions can lead to 
dangerous biases in dependence measure estimation. This is why the semi-parametric 
approach is quickly becoming the standard in joint multivariate modelling. Time series 
data, like the common and idiosyncratic components of financial processes, usually 
reveal time-varying variance and heavy-tailedness. While keeping the multi-step-ahead 
prediction of the common components from Forni et al, 2005, a GARCH (1,1) process is 
fitted to the common components and an AR(p) - GARCH (1,1) process is fitted to the 
idiosyncratic components. The proposed marginal dynamics are formally defined as:  
 

                                                
8 Weights other than asset values are used and discussed below. 
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where CC
tX  is the common component, and IC

tX  is the idiosyncratic component from 

Forni et al (2005). The model is estimated directly by Quasi-Maximum Likelihood. The 
best AR (p) - GARCH (1,1) can be selected by an automatic model selection criteria, 
such as the Akaike Information Criterion Corrected Version (AICC). Since in the 
database, book-value data are actually quarterly, an AR (3) process is used to track 
dynamic changes, which is especially important for macroprudential policy. 
 

Given the standardized i.i.d. residuals tε from the estimation of the marginal dynamics, 

the empirical cumulative distribution function (cdf) of these standardized residuals is 
estimated with a Gaussian kernel. This smoothes the cdf estimates, eliminating the 
rugged shape of the sample cdf. Howevr, although non-parametric kernel cdf estimates 
are well-suited for the interior of the distribution where most of the data are found, they 
tend to perform poorly when applied to the upper and lower tails. Therefore, to improve 
the efficiency of the tails of the distribution’s estimates, the upper and lower, e.g. 10% 
thresholds of the residuals, are reserved for each tail. Then, the amount by which those 
extreme residuals in each tail fall beyond the associated threshold is fitted to a 
parametric Generalized Pareto distribution (GP) by maximum likelihood. Since in our 
study there are only 93 monthly observations, 20% thresholds are used to ensure that 
there are sufficient data points at the tails to conform well to a GP. Extreme Value 
Theory (EVT) in general, and in particular the GP distribution, provide an asymptotic 
theory of tail behavior. Under the assumption of a strict white noise process, i.e. an 
independent, identically distributed process, the theory shifts the focus from modelling 
the whole distribution to modelling tail behaviour, and hence, even asymmetry may be 
examined directly by estimating the left and right tails separately. In addition, EVT has 
the advantage of requiring just a few degrees of freedom. This approach is often referred 
to as the distribution of exceedances or peaks-over-threshold method (see, for instance, 
McNeil (1999), McNeil and Frey (2000) or Nystrom and Skoglund (2002a&b)). 
 
3.2. The Dynamic Conditional t-Copula 
 
As stated above, copula theory provides an easy way to deal with (otherwise) complex 
multivariate modeling. The main advantage of the copula approach is its flexibility. It 
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allows the definition of the joint distribution through the marginal distributions and the 
dependence between the variables. In addition, copulas are often relatively 
parsimoniously parameterized, which facilitates calibration. Recently, copula theory has 
been extended to the conditional case, allowing the use of copulas to model dynamic 
structures, such as in Dias and Embrechts (2004), Patton (2004, 2006a&b), and 
Jondeau and Rockinger (2003, 2006). The conditional copula can be a very powerful 
tool for active risk management as shown by Fantazzini (2009), and Jin and Lehnert 
(2011). 
 
The t-copula is a good candidate for the high-dimensional problem dealt with in this 
paper allowing for non-zero dependence in the extreme tails. The copula of the 
multivariate standardized t distribution is the t-copula, and the conditional dynamic t-
copula is defined as follows9: 
 

)),(),...,(),((),;,...,,( 1
2

1
1

1
,21 nvvvvRttn ttttt

tttTvRC ηηηηηη −−−=
  

where )( nnn F εη =  for i=1,2,...,n, and ),1,0(~ iidtε are the innovations from the marginal 

dynamics introduced in the previous section. tR  is the rank correlation matrix, and tv is 

the degrees of freedom. )(1 nvt
t η− denotes the inverse of the t cumulative distribution 

function. tR and tv can be assumed to be constant, or a dynamic process through time.  

 
Engle (2002) proposes a class of models - the Dynamic Conditional Correlation (DCC) 
class of models - that preserves the ease of estimation of Bollerslev (1990)'s constant 
correlation model while allowing correlation to change over time. These kinds of dynamic 
processes can also be extended into t-copulas. The simplest rank correlation dynamics 
considered empirically is the symmetric scalar model where the entire rank correlation 
matrix is driven by two parameters: 
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9 See Patton (2006b) for the definition of a general conditional copula. 
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Given that the correlation between the Gaussian rank 

correlation )()(( 11 vuCorrGR
−− ΦΦ=ρ and a t-copula rank correlation 

)()(( 11 vtutCorr vvTR
−−=ρ  is almost equal to one, tR  can be well approximated by the 

Gaussian
tR  from the dynamic Gaussian Copula. For convenience, this study adopts a two-

step algorithm for estimation which means that tR  is estimated from the dynamic 

Gaussian copula first, and then, with tR  fixed, the degrees of freedom are recovered 

from the t-copula. 
 
The dynamic multivariate Gaussian copula is defined similarly to the t-copula as follows: 
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where )( nnn F εη =  for i=1,2,...,n, and )1,0(~ iidtε are again the innovations from the 

marginal dynamics introduced in the previous section. Gaussian
tR  is the Gaussian rank 

correlation matrix. The rank correlation dynamics is similarly driven by the two 

parameters listed above for the t-copula. However, )).((1*
nnnt F εηε =Φ= −

 
 

While the quasi-likelihood function for the dynamic Gaussian copula could be computed, 
convergence is not guaranteed in high dimensions, and sometimes it fails or is sensitive 
to the starting values. This incidental parameter problem causes likelihood-based 
inference to have economically important biases in the estimated dynamic parameters, 
with specially α displaying a significant downward bias. As a result, Engle, Shephard and 
Sheppard (2008) suggest an approach to construct a type of composite likelihood, which 
is then maximized to deliver the preferred estimator: 
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where tjY ,  is composed of all unique pairs of data, ψ  is a set of parameters, N  is the 

number of all pairs, and t=1,2,...,T. The composite likelihood is based on summing up 
the quasi-likelihood of all subsets. Each subset yields a valid quasi-likelihood, but this 
quasi-likelihood is only mildly informative about the parameters. By summing up many 
subsets, it is possible to construct an estimator which has the advantage of not making 
necessary the inversion of large dimensional covariance matrices. Further, and vitally, 
the estimator is not affected by the incidental parameter problem discussed above. It can 
also be very fast, and does not have the biases intrinsic in the usual likelihood estimator 
when the cross-section is large. This dynamic Gaussian copula can also be estimated by 
maximizing m-profile subset composite likelihood (MSCL) 10  using contiguous pairs, 
which is attractive from statistical and computational viewpoints for large dimensional 
problems, at least compared with the m-profile composite likelihood (MCLE) using all the 
pairs. Therefore, to avoid the known estimation difficulties of high-dimensional t-copula, 
m-profile subset composite likelihood (MSCL) are maximized using contiguous pairs, 
where the degrees of freedom for the t-copula is simply the 50th quantile of all degrees 
of freedom derived from pairwise t-copulas. 
 
3.3. Forward Simulation 
     
Using conditional dynamic copulas, it is relatively easy to construct and simulate from 
multivariate distributions built on marginal distributions and dependence structure. The 
GARCH-like dynamics in both variance and rank correlation offers multi-step-ahead 
predictions of the common and the idiosyncratic components simultaneously. 
 
The following steps illustrate the one-step-ahead simulation: 

1. Draw independently im
t

i
t

*
1

1*
1,..., ++ εε  for each component from the n-dimensional t 

distribution with zero mean, forecast correlation matrix 1+tR , and degrees of 

freedom 1+tv  to obtain im
t

i
t 1
1
1,..., ++ µµ  by setting )( *

11 1

ik
tv

ik
t t

t ++ +
= εµ , where k=1,...,m, the 

total paths of simulation, i=1,...,n, the number of components; 

2. Obtain im
t

i
t 1
1
1,..., ++ εε by setting )( 1

1
1

ik
ti

ik
t F +

−
+ = µε , where iF is the empirical marginal 

dynamics distribution for component i; 

3. Obtain im
t

i
t zz 1
1
1,..., ++ by setting i

t
ik
t

ik
tz 111 +++ = σε , where i

t 1+σ is the forecast standard 

deviation using a GARCH (1,1) model for component i; 

                                                
10 A moment-based profile likelihood, or m-profile likelihood for short, in which the nuisance parameters are 
not maximum quasi-likelihood estimators but attractive moment estimators. 
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4. Obtain im
t

i
t XX 1
1
1,..., ++

 
by setting ik

t
i
t

ik
t zX 111 +++ += λ , where i

t 1+λ is the forecast mean 

using an AR (p) model for the idiosyncratic component i, and the prediction of the 
common component using Forni et al (2005); 

5. Finally sum the predicted idiosyncratic and common components at t+1.  
 
In a similar way, several period predictions can be obtained. Both the idiosyncratic and 
common components are derived on the standardized first difference of the PD index. 

The simulated cumulative PDs have to be truncated by )0,( SimulatedDPsMax . This forward 

simulation approach therefore integrates the one-sided forecasting features of the 
GDFM into the dynamic copula framework.     
 
III. Data 
 
This study is applied to 32 major European banking groups, to their respective 37 
subsidiaries active in Luxembourg, and to two 100%-Luxembourg banks; surveillance of 
banking stability cannot stop at national borders. Market data used for the major 
European banking groups include government bond yields, stock prices and stock 
indices, production, employment and GDP data, consumer prices, housing prices, 
exchange rates, credit data, as well as the number of outstanding shares, and book 
value data from Bloomberg, DataStream, BIS, Eurostat, and ECB (see Appendix 1 for a 
detailed list of country and euro area series and sources). The market data start in May 
2000 and finish in September 2011. 
 
One difficulty is that short-term borrowing (BS047) and long-term debt (BS051) from 
Bloomberg have annual, semi-annual, and quarterly frequencies. To make the data 
consistent, four filtering rules as described in Appendix 2 are used. To get the “actual” 
PDs from neutral PDs, the expected returns are estimated using a capital-asset pricing 
model. The implied equity risk premiums data (Damodaran 2011) are downloaded from 
Damodaran Online at http://pages.stern.nyu.edu/~adamodar/. For consistency with that 
source, stock market returns are represented by the returns on the S&P 500 index. 
 
All the Luxembourg banks are unlisted, so quarterly book value data from the BCL 
database going back to 2003Q1 are used. 11  The 37 subsidiaries registered in 
Luxembourg represent about 63 percent of the total assets of the Luxembourg banking 
industry. When the two 100% Luxembourg banks are added to the list, the database 
represents nearly 70 percent of the total assets of the industry. For all the selected 

                                                
11 See Jin and Nadal De Simone, 2011a, for a detailed discussion of the estimation of credit risk models 
using balance sheet data when banks are not publicly listed. 
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Luxembourg banks, short term debt includes demand and time deposits of up to one-
year maturity, short term funding, and repos, while the long term debt includes time 
deposits of over one-year maturity and other long term funding. 
 
IV. Empirical Results 
 
As stated above, timeliness in reflecting credit risk events is a plus in macroprudential 
supervision. Banks’ marginal PDs estimated from structural credit risk models and 
aggregated in an index weighted by the share of respective banks’ assets in total assets 
do a relatively good job at tracking changes in credit risk, both across European and 
Luxembourg banks (Jin and Nadal De Simone, 2011a). Further, the GARCH structural 
credit risk model, despite its more sophisticated modeling approach, typically 
underperforms more basic models, but the combined Merton/GARCH-MIDAS model 
performs best by reflecting important market events earlier than other approaches (Jin et 
al 2011b). Unfortunately, this latter model cannot be used for Luxembourg banks due to 
the lack of sufficiently long data that would allow the robust modeling of the short- and 
long-run components of credit risk. For these reasons, this study estimates neutral 
marginal PDs and DDs from two structural credit risk models, Merton (1974) model and 
Delianedis and Geske (2003) model, and given its objective of accounting for overall 
banking sector credit risk, it incorporates dependence among banks’ PDs by using the 
GDFM Model (Forni et al, 2006) with a dataset including macroeconomic and financial 
variables. In addition to generating an indicator of overall banking sector credit risk that 
recognizes exogenous shocks timely, this framework identifies the build up of 
endogenous imbalances and it improves on the GDFM forecasting capacity by 
combining it with a dynamic t-copula. As stated above, the objective is twofold: first, to 
test the capacity of the framework to anticipate financial vulnerabilities reflected in, e.g., 
a persistent increase in PDs; second, to obtain an out-of-sample forecast distribution of 
overall banking sector credit  risk. 
 
The rest of this section discusses first the Kendall correlation of asset-weighted PDs and 
DDs between European banking groups and their Luxembourg affiliates. It then 
addresses the early-warning capabilities of the framework at the level of banks’ 
individual PDs and DDs, and at the level of indexes of banks’ PDs and DDs with weights 
suggested in the literature that proposes methods to identify systemic important 
institutions. Finally, it reports results on the out-of-sample forecasting capabilities of the 
framework, both for individual PDs and DDs and for total asset-weighted PDs and DDs. 
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1. Asset-weighted PDs and DDs 

 
As expected, there is a high degree of correlation (Kendall correlation) among European 
banking groups and Luxembourg banks PDs and DDs (Tables 1a and 1b, respectively). 
However, these correlations vary over time and also in sign depending on whether the 
ST or the FW components of PDs are considered and on whether the common or the 
idiosyncratic components of PDs and DDs are considered.12  
 
During the whole sample period, correlation of PDs and DDs between both set of banks 
are very highly significant for the whole time structure of PDs and for the common 
components. Interestingly, correlations are negative when the idiosyncratic components 
are involved, especially those of the banking groups PDs. These results suggest that the 
parent banks and their affiliates are subject to bank specific factors that may diverge at a 
given point in time. Finding the causes of this behavior is certainly beyond the scope of 
this study. Nevertheless, it can be conjectured that this may result from the different 
business models of Luxemburg affiliates that overwhelmingly are net suppliers of 
liquidity to parent banks. This working hypothesis seems reasonable when the same 
analysis is applied to the pre-crisis period, 2004-07, the crisis period, 2008-09, and the 
post-crisis period, 2010-2011. It seems that it is the FW idiosyncratic components of PD 
and DDs that are mostly significant and move in the opposite direction between group 
banks and Luxembourg affiliates during the pre-crisis period.  
 
During the crisis period, as is well known, correlations increase—banks’ 
interdependence increases—as reflected in the rise of correlations between the group 
banks and Luxembourg banks PDs (also in the increase in the number of significant 
correlations). DDs idiosyncratic components, instead, move in the same direction, as it is 
to be expected when banking sector credit risk increases. 
 
Finally, in the post-crisis period, there is again an increase in the importance of 
idiosyncratic components which move in disparate directions at the parent and at the 
affiliate banks. This is more the case with respect to the ST PDs than with respect to the 
FW PDs, however, which is an important difference with the pre-crisis period and 
possibly a reminder of the persistence of short-term solvency issues across some 
banking groups in Europe. 
 

                                                
12 Please note that the common and the idiosyncratic components are linearly orthogonal, so that the 
Pearson linear correlation among them is statistically insignificant. Results are available upon request. 
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A comparison of results between European and Luxembourg banks suggests that the 
crisis affected Luxembourg banks relatively less than European banks. Similarly, 
Luxembourg banks’ recovery was less dramatic. Given the liquidity shortages that 
characterized the crisis, especially in its onset and before policy measures alleviated it, 
traditional liquidity-providers such as Luxembourg banks were relatively less distressed. 
 
Summarizing, the strongest (and negative) correlation between the common 
components of banking groups’ PDs and their affiliates regards relatively more the FW 
PDs. This is visible in the pre- and post-crisis periods, and the reason may be the 
different business model of Luxembourg banks which are net liquidity providers. During 
the crisis period, however, the comovement of common components increased, in 
particular with respect to ST PDs. This is in agreement with the observed regularity of 
rising correlations during stressed periods. 
 

2. In-sample Early-warning Features of Single-bank PDs and Weighted 
Indexes of PDs 

 
As stated above, a macroprudential policymaker is interested not only in the timeliness 
feature of measures of credit risk, both at the bank level and at the systemic level, but 
ideally would like to have on real time, and as early as possible, some indication of the 
buildup of vulnerabilities in the financial system. The first feature is particularly important 
in the case of banks that are not public given the lags in the availability of book value 
data. The second feature is crucial for taking preventive actions to preserve financial 
stability and reduce the likelihood of systemic crises. To assess the strength of the 
framework proposed in this study to achieve those objectives, three approaches are 
followed. To assess the timeliness features of measures of credit risk as well as the 
contribution of the GDFM to that aim, first, a set of in-sample Granger causality tests is 
performed between the common component of the estimated PDs/the macrofinancial 
factors and estimated PDs.13 Second, the degree of in-sample commovement and leads 
and lags between the common components and estimated PDs is studied using spectral 
methods. Finally, to assess the strength of the framework to signal the build up of 
vulnerabilities over time, the forward PD of Delianedis and Geske is related to the 
macrofinancial data set to extract the factors responsible for its steady growth in the run 
up to the crisis. 
 
 
 

                                                
13 Jin et al (2011b) studied lead-lag relationships across models’ PDs predictions, but had no reference to 
macrofinancial conditions. 
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2.1. Granger causality tests 
 
Tables 2a and 2b summarize the results of the Granger causality tests applied to each 
bank’s estimated PDs and to indexes of PDs weighted in the different ways suggested in 
the literature on indicators of banks’ systemic importance, respectively (Drehmann and 
Tarashev, 2011): total assets, interbank lending and interbank borrowing. Individual 
bank data on interbank lending and borrowing at quarterly frequency are available for 
Luxembourg banks only.14 Table 2a reports the ratios according to Granger Causality 
test at the p-values of 1%, 5% and 10%. The ratio is the percentage of cases when X 
Granger causes another measure Y, and Y does not Granger causes X at a given 
confidence level over the available banks for both banking groups and Luxembourg 
banks. The ratios under common component mean that the common component 
Granger causes DPs and DPs do not Granger cause the common component; similarly, 
for DPs.15 At p-values of 1%, for example, the common component of the estimated DPs 
Granger causes banking groups Geske All PDs and DDs in 31% and 25% of the cases, 
respectively. It also Granger causes Luxembourg banks’ PDs in 26% and DDs in 36% of 
the cases. In all cases, the opposite is much less frequent. Importantly, the common 
component has a clearer anticipatory feature with respect to DDs than PDs either for 
banking groups or for Luxembourg banks. 
 
Moreover, the framework’s best performance is with respect to the FW PDs of 
Luxembourg banks, i.e., 50%. This feature is likely due to the use of book-value data for 
estimating Luxembourg banks’ PDs, which is less timely than the information contained 
in share prices available for estimating banking groups’ PDs. This in-sample leading 
information on the common component of PDs is a particularly useful feature of the 
proposed methodology for Luxembourg banks as they are not quoted. 
 
Table 2b shows the Granger causality tests between the weighted common components 
and PDs both for the whole sample period and for the period immediately prior to 
Lehman’s collapse. Those indexes of PDs have been constructed using equal weights 
and weights suggested in the literature on the determination of the systemic nature of 
banking institutions. 16  During the whole sample period, in general, the common 

                                                
14 Indexes were constructed weighing estimated PDs using banks’ shares in total assets, in total interbank 
lending and total interbank borrowing. 
15 Only standardized measures are displayed; non-standardized measures provide the same results. 
16 Drehmann and Tarashev (2011) propose three measures for determining banks’ systemic importance. 
Two measures are top down: the participation approach (i.e., expected losses incurred by a given bank’ non-
bank creditors) and the contribution approach (i.e. expected losses from a bank’s exposure to exogenous 
shocks, from its contribution to losses via propagation and from its idiosyncratic exposure to shocks). 
Another measure is bottom up, i.e. the expected losses of the whole banking system conditional on a given 
bank being in default. The authors show that size is a good proxy of all measures, that interbank lending 
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component does not Granger cause the PDs or DDs indexes suggesting, by comparison 
to Table 2a, that averaging hides important information. During the run up to Lehman’s 
collapse, results are marginally better: When all PDs are attributed equal weight, the 
common component Granger causes DDs and DDs do not Granger cause the common 
component for banking groups and Luxembourg banks. Using total assets as weights, 
for Luxembourg banks, the common component Granger causes PDs for Geske ST and 
FW and PDs do not Granger cause the common component. Clearly, the use of 
weighting schemes hides information embedded in the common factors and variable 
loadings making it more difficult to draw conclusive evidence using Granger causality 
tests. These weights, although suggested in the literature dealing with the determination 
of the systemic nature of individual banks, is not useful to construct indices of PDs (or 
DDs) that can (visually or statistically) provide a timely measure of credit risk. 
 
2.2. Frequency-domain analysis 
 
The bivariate test in the previous section clearly suffers from the averaging across 
periods which, in addition to the presence of nonlinearities and feedback effects in 
financial markets, may mask the lead/lag relationships between common components 
and estimated PDs. To take that into account, this section briefly looks at the 
comovement between PDs and its common components using spectral methods. In 
particular, the coherence (squared) and the phase angle are estimated.17 Figures 1a to 
1d display the estimated coherences and phase angles of the common components and 
Geske ST and FW PDs for banking groups and Luxembourg banks. The complicated 
interrelations and feedback effects between the common components and measures of 
PDs evince clearly. 
 
In general, the common components lag estimated ST PDs for banking groups only at 
periodicities between 1 and 2 years. The common components lead ST PDs in cycles 
between 2.5 years and 8 years, that is to say, roughly during the minor (2 to 4 years) 
and the major (4 to 8 years) business cycles’ durations (cycle definitions according to the 
National Bureau of Economic Research). The common components lead FW PD during 
cycles of 2 years and cycles of between 3 to 5 years, that is to say, during most of the 
minor cycle and the first part of the major cycle.  
 

                                                                                                                                            
proxies well the participation and the contribution approaches whereas interbank borrowing proxies well the 
contribution and the bottom-up approaches. 
17 Coherence (squared) is the proportion of the variance of a series which can be explained by the other 
series, period (or frequency) by period (by frequency). The phase lead is the fraction of a cycle by which one 
series leads (lags) the other at each period or frequency. The phase lead is significant only at the periods (or 
frequencies) at which the coherence is significant.  
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In the case of Luxembourg banks, the common components lag estimated ST and FW 
PDs around periodicities of 1 year, and between 1.5 and 2.5 years for ST PDs and about 
2 years for FW PDs. Otherwise, the common components lead ST and FW PDs at 
periodicities of about 3 quarters and in the longer run, at periodicities ranging between 3 
and (over) 8 years for the ST PDs, and between 4 and (over) 8 years for the FW PDs.  
 
Summarizing, the results support the leading features of information embedded in the 
common components at relatively high frequency (i.e., roughly 3 quarters) and at 
relatively lower frequency (i.e., between around 3 years and 8 years). These results are 
consistent with the visual inspection of Figures 2b and 2d. 
 
2.3 In-sample early warning features of forward probabilities of default 
 
Given the macroprudential policymaker’s interest in preventing the buildup of financial 
vulnerabilities that could unravel disorderly, and the well-known nonlinearities and 
feedback between PDs or DDs and their common components, it is advisable to look at 
matters even further. First, some leading features of the common component for 
Luxembourg banks’ PDs can be visualized in the set of figures 2 (a to d) and 3 (a to d) 
which show aggregated PDs in indexes for banking groups and for Luxembourg banks. 
Equally-weighed PDs are in Figures 2, and total asset-weighed PDs are in Figures 3. 
What is of particular interest here is the leading behavior of the common component of 
estimated FW PDs.. For banking groups, starting in 2005 (Figure 2b), and for 
Luxembourg banks, since early 2006 (Figure 2d), there is a clear, persistent increase in 
FW PDs which suggests a buildup of credit risk long-term vulnerabilities—a feature also 
found by Koopman et al (2010).  
 
It is useful to compare the equal weighted index with the index weighted by total assets, 
i.e., Figure 2b compared to Figure 3b, and Figure 2d compared to Figure 3d. When PDs 
are aggregated weighted by total assets, the level of PDs and of the common 
component tend to be somewhat lower suggesting that in the buildup of vulnerabilities, 
the relatively largest banks had lower PDs and were affected less negatively by markets 
turmoil than the relatively smaller banks. A policy message is that a macroprudential 
authority may wish to estimate both versions of the index, or look at median and 
quantiles distributions of PDs and common components. 
 
This salient feature of the framework proposed in this paper merits further analysis. In 
order to further analyze the in-sample early warning feature of the common components 
of forward probabilities of default, the following approach is followed: first, for each bank, 
the first difference of the accumulated common component of FW PDs is regressed on 
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the first difference of the equal weighted accumulated common component of FW PDs; 

then, the bank i  with positive beta iβ  (the coefficients of the PD index) are selected,  

and beta weights are constructed as follows, )(ββω sumii = . Second, the absolute 

value of each of the factor loadings il  for each selected bank are chosen such 

that iii lf ω= , and f  are summed up across the banks giving jF  for each of the j  

factors. This enables to construct the weighted scores of all the factors using the 

expression: .)(FsumFeFactorScor ij = Third, all input variables from GDFM are 

categorized into five classes: real variables (GDP in volume and nominal, industrial 
production, the unemployment rate, the HICP, and agricultural and industrial property 
prices), funding prices (short- and long-term interest rates, foreign exchange rates, stock 
market prices, stock price volatility, house prices), funding quantities (total credit, loans 
to households, mortgages, loans to non-financial firms, and interbank lending and 
borrowing), confidence (various indices of consumer and business sentiment), and PDs 
(All, ST, and FW). The Classification Score by factor j  is constructed as the share of 

factor loadings in absolute value of each set of economic classification for all variables, 
or for selected variables by quantiles (the distribution of the factor loadings of all input 
variables from the GDFM). Finally, the scores by economic classification (i.e., real, 
funding prices, funding quantities, confidence, and PDs) are aggregated from each 
factor as follows: Factor Score * Proportion of Variance Explained by the Factor * 
Classification Score by Factor. 
 

The same exercise is also applied to the accumulated common component of ST PDs. 
Tables 3a and 3b display the differences of the classification scores between the FW 
PDs and the ST PDs for all sets of macro variables by quantiles for the pre-crisis period 
(2004-2007) and the crisis period (2008 to 2011), respectively. This enables the analysis 
of the GDFM factors contribution to the buildup of the forward FW PDs. 
 
Consistent with early work by Borio and Lowe (2002), and more recent work by 
Koopman et al (2010), real economic activity, credit growth and interbank activity explain 
the buildup of vulnerabilities of large European banking groups in the run up to the crisis 
as well as credit growth and interbank activity explain it for Luxembourg banks. For 
example, in the run up to the crisis, real variables explain over 6% more of the FW than 
of the ST at the 10% and at the 20% quartiles. This results from real variables explaining 
over 16% of the FW PD at those quantiles and real variables explaining less than 10% of 
the ST PD at those quantiles (not shown). In general, differences are smaller for 
Luxembourg banks, a likely outcome of the use of book value as opposed to market data 
for estimating PDs in the case of Luxembourg. Finally, notice that for banking groups, 
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there is a slight tendency for differences to fall during the crisis period when compared to 
the pre-crisis period, especially for real variables, but the persistence of vulnerabilities as 
reflected in the accumulated common components is striking. 
 
As suggested by the analysis, the FW probability of default estimated from Delianedis 
and Geske model is a useful early warning measure of banks’ vulnerabilities, and it 
should be part and parcel of macroprudential policy tools to monitor financial stability 
and risk build up over time. 
 

3. Out-of-sample Forecasting 
 
In-sample results say nothing about the out-of-sample framework performance. 
Therefore, this section addresses the out-of-sample forecasting capabilities of the 
proposed framework. However, the short number of data points available constrains a 
full-fledged, standard evaluation of the out-of-sample forecasting capabilities of the 
framework. Table 4 reports the coverage ratios, root-mean squared errors, as well as the 
bias, the variance and the covariance decomposition of Theil’s inequality coefficient from 
2010 to 2011 across all estimated Geske’s PDs (Table 4a) and DDs (Table 4b) for 
banking groups and Luxembourg banks.18 The coverage ratio is the share of banks 
whose empirical simulated cdf at each of the estimated PDs or DDs is within the range of 
the respective quantiles. Under the null hypothesis that this forecasting framework 
correctly estimates the dynamics of PDs or DDs, the coverage ratio should approximate 
the range of quantiles, if the number of underlying banks were large enough (which 
recall is not the case). For example, during the first month of out-of-sample forecasts, 
77% of bank PDs forecasted using only the common component are within the 5%-95% 
quantiles of the forecasted cdf of PDs. The percentage just falls to 70% at month six of 
the out-of-sample forecasts. When not only the common, but also the idiosyncratic 
components, are forecasted, 86% percent of the forecasted PDs fall within the 5%-95% 
quantiles and the percentage increases to about 88% at month six of the out-of-sample 
forecasts. Decomposing Theil’s inequality coefficient into bias, variance, and covariance, 
it seems that the improvement in forecasting ability by adding the idiosyncratic 
component results from an improvement in the model’s capacity to replicate the degree 
of variance in PDs (column “Variance Proportion”) and from reducing unsystematic error  
(column “covariance Proportion”). 
 
Tables 5a and 5b show the results of the out-of-sample forecast evaluation for banking 
groups and Luxembourg banks, respectively, using an index of PDs weighted by total 

                                                
18 The model is re-estimated recursively adding one period at a time and forecasting always 6 months 
forward. 
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assets. Results suggest that, in contrast to the out-of-sample forecasts of individual 
banks’ PDs, the use of idiosyncratic components deteriorates the forecast for banking 
groups PDs, but slightly improves the forecast for Luxembourg banks. For Luxembourg 
banks, overall, idiosyncratic component forecasts seem to improve the out-of-sample 
performance of the framework, albeit during the first quarter, but not the second quarter 
Again, aggregation does hide idiosyncratic features of banks, and it is therefore not 
surprising that the idiosyncratic component forecast does not help improving the overall 
out-of-sample forecast. Figures 2a to 3d illustrate the out-of-sample forecasts of the 
common and of the common and idiosyncratic components and the 10%-90% quantiles 
for an index of banking groups and Luxembourg banks by equal weighted and total 
assets weighted. Visual inspection confirms the results of Tables 5a and 5b. 
 
V. Conclusions and macroprudential policy implications 
 
This study develops a framework that recognizes exogenous shocks timely and 
generates an early warning indicator of overall banking sector credit risk that identifies 
early build ups of endogenous imbalances. In addition, it provides robust out-of-sample 
forecasts of probabilities of default. It applies it to a set of European banking groups and 
their affiliates in Luxembourg given that banking stability cannot stop at national borders. 
 
It uses a two-step approach to proxy banks’ default dependency. First, marginal PDs are 
estimated using Delianedis and Geske compound option model, a structural credit risk 
model that distinguishes between the probability of default at the end of year one and 
the probability of default in the long run, conditional on not defaulting the first year. 
Second, the framework offered by the generalized dynamic factor model applied to a 
large macrofinancial dataset extracts the common component of banks’ marginal PDs, 
both at the banking group and at the subsidiary levels, showing how a set of common 
systemic factors affect both of them simultaneously, albeit with different weights. Beyond 
real economic activity, different credit aggregates as well as the amount of interbank 
lending and borrowing are important systemic drivers of European banking groups’ risk, 
as suggested by Borio and Lowe (2002), and by Drehmann and Tarashev (2011), 
respectively. For Luxembourg, credit aggregates and interbank activity are the main 
drivers. Therefore, the proposed framework contains the salient feature of measuring the 
relative riskiness of the banking system in a non-crisis mode, a particularly useful 
characteristic associated with one key aspect of systemic risk. As such, it allows to take 
remedial actions as risk increases following changes in FW PDs over time consistent 
with the business cycle and with growth in credit aggregates and wholesale funding. This 
is a useful tool of the macroprudential toolkit. 
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In addition, the same framework identifies in a robust manner the idiosyncratic 
component of banks’ PDs for the banking groups and their respective Luxembourg 
affiliates making it possible to model them structurally, a task, however, which is beyond 
the scope of this paper. This two-step approach permits to track in advance over a 
couple-of-year time span a persistent increase in credit risk for the banking system in the 
tradition of early warning indicators. This rise in credit risk can be interpreted as an 
increase in the vulnerability of the financial system. As such, the framework of this study, 
by separating the role of system developments from individual banks’ idiosyncratic 
features, is an important step toward building macro-financial models of systemic risk 
that contain early-warning features with a realistic characterization of episodes of 
financial instability. This work contributes to the systemic risk literature incorporating the 
externalities that financial intermediaries exert on the rest of the financial system and on 
the economy in general by signaling out the role of common systemic forces affecting all 
banks and also by showing the buildup of credit risk or widespread imbalances over time, 
another interpretation of systemic risk. It contributes to the macroprudential literature 
with a method to monitor systemic risk. 
 
Also important for macroprudential policy is the policymaker’s capacity to project or 
forecast increases in the banking sector credit risk at any given point in time. This study 
contributes as well to the macroprudential literature by suggesting a framework to 
forecast credit risk changes. By using a dynamic conditional t-copula, this framework 
helps forecasting both the common as well as the idiosyncratic components of credit risk. 
This remediates the well known feature that simply aggregating banks’ marginal PDs 
provides a downward-biased measure of banking systemic risk. Indeed, by incorporating 
the common and the idiosyncratic components of a broad set of macro-financial 
variables, the framework improves the analytical features and the out-of-sample 
forecasting performance of the model.  
 
Useful extensions of this work include the development of an indicator of (systemic) joint 
probabilities of credit risk changes by including in a dynamic copula the banks that at 
each point in time have the combination of PDs and size (or share in interbank lending) 
that is the highest. This would proxy each institution’s contribution to systemic risk. Also, 
explicit modeling of the volatility component of structural credit risk model like it is done 
with CDOs would allow to better link PDs with macroeconomic and financial variables 
understanding the risk of simultaneous defaults and facilitating thereby policymakers’ 
decision-making process. 
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Appendix 
 
A. Filtering Rules for BS_ST_BORROW and BS_FW_BORROW: 

 
Short-term borrowing (BS047) and long-term debt (BS051) from Bloomberg have annual, 
semi-annual, and quarterly data. The four filtering rules applied to make them consistent 
are the following: 
 

I. Take any zero as missing data.  
 

II. If annual data exist and are not equal to the semi-annual/quarterly data, then let 
the semi-annual/quarterly data be equal to the annual data—this gives priority to 
annual data assuming them to be relatively more reliable. 

 
III. If annual data do not exist for the current fiscal year and both the semi-

annual/quarterly data and annual data exist for the previous and next fiscal years, 
but semi-annual/quarterly data are very different to the corresponding annual 
data at the previous and next fiscal year, then treat the semi-annual/quarterly as 
missing data—this is done to avoid unreliable semi-annual /quarterly data. 

 
IV. If annual data do not exist for the current fiscal year and only annual data exist at 

both previous and next fiscal year, but they are very different to the semi-annual 
/quarterly data, then treat the semi-annual/quarterly as missing data—this should 
avoid having unreliable and too choppy semi-annual/quarterly data between 
previous and next fiscal year.  

 
 
B. Data Sources for market indexes and macroeconomic variables  

 
Bloomberg: 
• Interest Rates Index (3M, 6M, 1Y, 10Y) 
• Eurostat Industrial Production Eurozone Industry Ex Construction YoY WDA 
• Eurostat Industrial Production Eurozone Industry Ex Construction MoM SA 
• European Commission Economic SentiMent Indicator Eurozone 
• European Commission Manufacturing Confidence Eurozone Industrial Confidence 
• Sentix Economic Indices Euro Aggregate  Overall Index on Euro area 
• European Commission Consumer Confidence Indicator Eurozone 
• European Commission Euro Area Business Climate Indicator 
 
DataStream: 
• DS Market - PRICE INDEX 
• DS Banks - PRICE INDEX 
• EURO STOXX - PRICE INDEX 
• EURO STOXX 50 - PRICE INDEX 
• VSTOXX VOLATILITY INDEX - PRICE INDEX 
• EU BANKS SECTOR CDS INDEX 5Y 
 
The Bank for International Settlements (BIS): 
• Property Price Statistics 
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Eurostat: 
• GDP 
• HICP 
• Unemployment Rates 
 
European Central Bank (ECB): 
• Exchange Rates 
• Loan to Households 
• Loan to Non-Financial Corporations 
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Lux 
Geske 
Total

Lux 
Geske 

ST

Lux 
Geske 

FW

Lux 
Accumulated 

Common 
Component 

Total

Lux 
Accumulated 

Common 
Component ST

Lux 
Accumulated 

Common 
Component FW

Lux 
Accumulated 
Idiosyncratic 

Component 
Total

Lux 
Accumulated 
Idiosyncratic 

Component ST

Lux 
Accumulated 
Idiosyncratic 

Component 
FW

Group Geske Total 0.51 0.50 0.45 0.47 0.45 0.66 -0.17 -0.19 -0.12
Group Geske ST 0.52 0.50 0.47 0.46 0.43 0.66 -0.15 -0.18 -0.10
Group Geske FW 0.35 0.36 0.25 0.49 0.51 0.51 -0.28 -0.30 -0.24
Group Accumulated Common Component Total 0.62 0.60 0.57 0.34 0.31 0.54 -0.03 -0.06 0.03
Group Accumulated Common Component ST 0.54 0.53 0.49 0.44 0.41 0.62 -0.14 -0.16 -0.05
Group Accumulated Common Component FW 0.50 0.50 0.42 0.17 0.19 0.35 0.12 0.09 0.12
Group Accumulated Idiosyncratic Component Total -0.57 -0.57 -0.47 -0.28 -0.30 -0.41 -0.02 0.01 -0.05
Group Accumulated Idiosyncratic Component ST -0.46 -0.46 -0.36 -0.42 -0.44 -0.47 0.13 0.16 0.06
Group Accumulated Idiosyncratic Component FW -0.51 -0.49 -0.43 -0.15 -0.15 -0.34 -0.19 -0.18 -0.15

Group Geske Total -0.04 -0.04 0.10 0.09 0.01 0.60 -0.14 -0.08 -0.38
Group Geske ST 0.00 -0.01 0.14 0.06 -0.02 0.57 -0.09 -0.04 -0.32
Group Geske FW -0.46 -0.41 -0.37 0.38 0.32 0.30 -0.59 -0.55 -0.60
Group Accumulated Common Component Total 0.38 0.35 0.50 -0.38 -0.47 0.09 0.28 0.33 0.18
Group Accumulated Common Component ST 0.09 0.07 0.19 -0.01 -0.10 0.40 -0.07 -0.04 -0.13
Group Accumulated Common Component FW 0.36 0.34 0.43 -0.46 -0.47 -0.12 0.42 0.44 0.38
Group Accumulated Idiosyncratic Component Total -0.25 -0.27 -0.25 0.43 0.41 0.26 -0.20 -0.21 -0.36
Group Accumulated Idiosyncratic Component ST 0.17 0.14 0.19 -0.09 -0.12 0.05 0.26 0.28 0.07
Group Accumulated Idiosyncratic Component FW -0.37 -0.35 -0.38 0.53 0.53 0.20 -0.52 -0.54 -0.47

Group Geske Total 0.42 0.38 0.17 0.51 0.38 0.07 -0.20 -0.30 0.31
Group Geske ST 0.44 0.36 0.20 0.53 0.36 0.09 -0.21 -0.28 0.34
Group Geske FW 0.37 0.48 -0.13 0.32 0.53 -0.23 -0.10 -0.20 0.16
Group Accumulated Common Component Total 0.45 0.40 0.16 0.52 0.40 0.06 -0.17 -0.28 0.30
Group Accumulated Common Component ST 0.46 0.39 0.20 0.55 0.38 0.10 -0.19 -0.26 0.35
Group Accumulated Common Component FW 0.41 0.53 -0.14 0.36 0.58 -0.24 -0.07 -0.15 0.15
Group Accumulated Idiosyncratic Component Total -0.69 -0.78 0.08 -0.45 -0.59 0.19 -0.32 -0.20 -0.03
Group Accumulated Idiosyncratic Component ST -0.38 -0.49 0.18 -0.20 -0.39 0.27 -0.25 -0.17 -0.01
Group Accumulated Idiosyncratic Component FW -0.55 -0.49 -0.17 -0.54 -0.36 -0.03 -0.20 -0.17 -0.22

Group Geske Total 0.61 0.61 0.54 0.42 0.37 0.49 0.35 0.35 0.07
Group Geske ST 0.60 0.60 0.53 0.42 0.37 0.45 0.35 0.35 0.10
Group Geske FW 0.42 0.42 0.33 0.05 0.00 0.42 0.48 0.50 -0.15
Group Accumulated Common Component Total 0.70 0.70 0.61 0.27 0.22 0.54 0.54 0.54 0.05
Group Accumulated Common Component ST 0.67 0.67 0.62 0.33 0.27 0.59 0.46 0.46 0.02
Group Accumulated Common Component FW 0.41 0.41 0.32 -0.18 -0.23 0.48 0.65 0.70 -0.17
Group Accumulated Idiosyncratic Component Total -0.43 -0.43 -0.34 0.12 0.15 -0.50 -0.61 -0.67 0.19
Group Accumulated Idiosyncratic Component ST -0.48 -0.48 -0.41 0.05 0.08 -0.51 -0.57 -0.63 0.11
Group Accumulated Idiosyncratic Component FW -0.44 -0.44 -0.29 0.19 0.24 -0.45 -0.66 -0.71 0.14

Table 1: Total Asset Value Weighted PDs and PDs' Component Rank Correlation between Banking Groups and Luxembourg Banks

2004-2007

2008-2009

2004-2011

2010-2011

The table reports the Kendall correlation matrix of the monthly PDs and their components between banking groups and Luxembourg banks. For Luxembourg banks, monthly PDs are 
assumed to be same within each quarter. A  bold value with underscore indicates significance at the 95% level, whereas a bold value without underscore indicates significance at the 90% 
level.  
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Lux Merton 
DD

Lux Accumulated 
Common Component

Lux Accumulated 
Idiosyncratic 

Component

Group Merton DD 0.47 0.48 -0.11
Group Accumulated Common Component 0.41 0.41 -0.12
Group Accumulated Idiosyncratic Component 0.43 0.50 -0.18

Group Merton DD -0.37 0.06 -0.59
Group Accumulated Common Component -0.54 -0.16 -0.62
Group Accumulated Idiosyncratic Component -0.22 0.24 -0.46

Group Merton DD 0.24 0.54 0.05
Group Accumulated Common Component 0.18 0.53 0.00
Group Accumulated Idiosyncratic Component 0.25 -0.12 0.39

Group Merton DD 0.30 -0.12 0.02
Group Accumulated Common Component 0.24 -0.05 -0.06
Group Accumulated Idiosyncratic Component 0.09 -0.20 0.11

The table reports the Kendall correlation matrix of the monthly DD and its components between Banking 
Groups and Luxembourg Banks. For Luxembourg Banks, monthly DD (risk neutral) are assumed to be same 
within each quarter. A  bold value with underscore indicates significance at the 95% level, whereas a bold 
value without underscore indicates significance at the 90% level.

Table 1b: Total Asset Value Weighted DD and DD's Component Rank Correlation between Banking 
Groups and Luxembourg Banks

2004-2007

2008-2009

2010-2011

2004-2010
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Common Component PDs
Common 

Component PDs
Common 

Component PDs
Group Geske All 0.31 0.13 0.41 0.13 0.44 0.13
Group Geske ST 0.28 0.19 0.28 0.16 0.34 0.16
Group Geske FW 0.28 0.21 0.28 0.21 0.34 0.21
Group DD 0.25 0.00 0.41 0.00 0.56 0.00
Lux Geske All 0.26 0.08 0.28 0.05 0.31 0.05
Lux Geske ST 0.21 0.08 0.28 0.05 0.28 0.05
Lux Geske FW 0.50 0.03 0.42 0.08 0.44 0.06
Lux  DD 0.36 0.00 0.41 0.00 0.44 0.00

Table 2a: Granger Causality Test between Common Components and PDs for Each Bank

This table reports the ratios according to Granger Causality test at the p-values of 1%, 5% and 10% respectively. The measures 
are ranked by calculating the ratio of the times X Granger causes another measure Y and Y does not Granger causes X to the 
number of the available banks for banking groups and Luxembourg banks. The ratios under Common Component mean that the 
Common Component Granger causes PDs and PDs do not Granger cause the Common Component; similarly, for PDs. The 
standardized measure is constructed by (x-mean(x))/std(x).

At p-value of 1% At p-value of 5% At p-value of 10%

 

Common 
Component PDs

Common 
Component PDs

Common 
Component PDs

Common 
Component PDs

Group Geske All 0.02 0.39 0.71 0.54 0.00 0.00 0.00 0.00
Group Geske ST 0.90 0.13 0.24 0.11 0.00 0.00 0.00 0.00
Group Geske FW 0.00 0.00 0.01 0.02 0.00 0.00 0.51 0.00
Group DD 0.00 0.58 0.30 0.79 0.00 0.42 0.38 0.40
Lux Geske All 0.79 0.95 0.74 0.91 0.00 0.00 0.92 0.64
Lux Geske ST 0.45 0.49 0.59 0.84 0.04 0.00 0.00 0.02
Lux Geske FW 0.68 0.00 0.91 0.00 0.90 0.00 0.00 0.86
Lux  DD 0.34 0.62 0.88 0.45 0.00 0.48 0.00 0.00

Lux Geske All 0.84 0.70 0.84 0.77 0.84 0.68 0.00 0.05
Lux Geske ST 0.67 0.94 0.82 0.96 0.90 0.63 0.00 0.75
Lux Geske FW 0.62 0.00 0.68 0.86 0.95 0.00 0.00 0.00
Lux  DD 0.69 0.61 0.94 0.85 0.00 0.00 0.00 0.00

Total Interbank Lending 
Weighted 

Total Interbank 
Borrowing Weighted 

Total Interbank Lending 
Weighted 

Total Interbank 
Borrowing Weighted 

1/30/2004 - 9/30/2011

Table 2b: Granger Causality Test between Common Components and PDs for Weighted Index

1/30/2004 - 6/30/2008

This table reports the p-value according to Granger Causality tests. The p_value under Common Component refers to the test of the 
null hypothesis that the Common Component does not Granger cause PDs; similarly, for PDs. The standardized measure is 
constructed by (x-mean(x))/std(x).

p-Value p-Value

Equal Weighted 
Total Asset Value 

Weighted Equal Weighted 
Total Asset Value 

Weighted 
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Classification

FW Scores 
minus ST 
Scores

Scores 
Difference 
at 1% Top 
Quantile

Scores 
Differenceat 
5% Top 
Quantile

Scores 
Differenceat 
10% Top 
Quantile

Scores 
Difference 
at 20% Top 
Quantile

FW Scores 
minus ST 
Scores

Scores 
Difference 
at 1% Top 
Quantile

Scores 
Differencea
t 5% Top 
Quantile

Scores 
Differencea
t 10% Top 
Quantile

Scores 
Difference 
at 20% Top 
Quantile

Real 1.91% 4.87% 7.12% 6.56% 6.27% 6.33% 3.56% 5.48% 5.12% 5.12%
Funding prices -2.37% 3.28% -1.39% -2.38% -5.05% -5.03% 0.89% -2.26% -2.93% -4.94%
Funding quantities 1.14% 2.37% 2.67% 2.39% 2.95% 4.11% 2.38% 2.55% 2.22% 2.58%
Confidence -0.42% 0.00% 0.00% -0.59% -0.69% 0.14% 0.00% 0.00% -0.53% -0.55%
PDs All -0.99% -10.20% -7.39% -4.40% -3.60% -4.29% -8.19% -6.15% -3.58% -2.96%
PDs ST -1.21% -10.51% -6.57% -6.31% -3.80% -4.48% -10.03% -5.66% -5.31% -3.22%
PDs FW 1.93% 10.20% 5.57% 4.73% 3.91% 3.22% 11.38% 6.03% 5.02% 3.97%

Classification

FW Scores 
minus ST 
Scores

Scores 
Difference 
at 1% Top 
Quantile

Scores 
Differenceat 
5% Top 
Quantile

Scores 
Differenceat 
10% Top 
Quantile

Scores 
Difference 
at 20% Top 
Quantile

FW Scores 
minus ST 
Scores

Scores 
Difference 
at 1% Top 
Quantile

Scores 
Differencea
t 5% Top 
Quantile

Scores 
Differencea
t 10% Top 
Quantile

Scores 
Difference 
at 20% Top 
Quantile

Real -0.14% -0.31% -0.63% -0.19% -0.05% 0.14% 0.04% 0.00% 0.59% 0.88%
Funding prices -0.65% -2.87% -1.60% -1.23% -1.25% -1.46% -4.70% -3.12% -2.78% -2.96%
Funding quantities 0.28% 2.02% 1.81% 1.06% 0.84% 0.37% 1.98% 1.61% 1.08% 1.12%
Confidence -0.04% 0.00% 0.00% -0.11% 0.03% -0.10% 0.00% 0.00% -0.23% -0.04%
PDs All 0.11% 1.70% -0.02% 0.00% -0.05% 0.05% 1.01% -0.80% -0.42% -0.46%
PDs ST -0.05% -2.01% -0.77% -0.46% -0.26% -0.11% -3.77% -1.31% -1.00% -0.56%
PDs FW 0.48% 1.47% 1.22% 0.93% 0.75% 1.11% 5.43% 3.62% 2.77% 2.03%

Note: Real variables are GDP in volume and nominal, industrial production, the unemployment rate, the HICP, and agricultrual and industrial
property prices. Funding prices are short- and long-term interest rates, foreign exchange rates, stock market prices, stock price volatility,
house prices. Funding quantities are total credit, loans to households, mortgages, loans to non-financial firms, and interbank lending and borrowing. 
Confidence includes various indices of consumer and business sentiment.

Table 3a: Banking Groups - Factors' Contributions to the Early-Warning Features of FW PDs (relative to ST PDs)

Table 3b: Luxembourg Banks - Factors' Contributions to the Early-Warning Features of FW PDs (relative to ST PDs)

30-Jan-2004 to 31-May-2007

30-Jan-2004 to 31-May-2007

31-Jan-2008 to 30-Sep-20011

31-Jan-2008 to 30-Sep-20011

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 39 

Q 5%-
95%

Q 10%-
90%

Q 15%-
85%

Q 20%-
80%

Q 25%-
75%

Q 30%-
70%

Q 35%-
65%

Q 40%-
60%

Q 45%-
55%

2nd Month 0.724 0.607 0.501 0.412 0.342 0.271 0.200 0.133 0.067 0.038 0.004 0.019 0.977
3th Month 0.709 0.566 0.462 0.376 0.316 0.246 0.187 0.119 0.060 0.044 0.010 0.025 0.965
4th Month 0.705 0.559 0.457 0.383 0.314 0.242 0.181 0.124 0.063 0.051 0.016 0.028 0.956
5th Month 0.707 0.555 0.461 0.379 0.310 0.238 0.180 0.122 0.059 0.057 0.015 0.027 0.958
6th Month 0.704 0.563 0.456 0.381 0.316 0.251 0.186 0.125 0.065 0.063 0.014 0.026 0.960

1th Month 0.857 0.773 0.689 0.596 0.503 0.404 0.310 0.220 0.115 0.031 0.004 0.014 0.981
2nd Month 0.854 0.747 0.649 0.568 0.475 0.381 0.300 0.207 0.108 0.042 0.005 0.015 0.980
3th Month 0.864 0.748 0.649 0.554 0.467 0.369 0.274 0.184 0.093 0.047 0.010 0.016 0.974
4th Month 0.870 0.751 0.649 0.555 0.469 0.377 0.282 0.188 0.105 0.055 0.015 0.018 0.967
5th Month 0.874 0.753 0.647 0.556 0.475 0.382 0.288 0.190 0.095 0.061 0.012 0.014 0.973
6th Month 0.875 0.759 0.648 0.549 0.463 0.374 0.284 0.191 0.095 0.066 0.011 0.012 0.977

The table reports the coverage ratios, root mean square erros, and the proportions of bias, variance, and covariance respectively from 2010 to 2011 
across all Gesk's PDs for both banking groups and luxembourg banks. The coverage ratio is the proportion of banks whose empirical cdf (simulated) 
at each of the observed PDs are within the range of quantiles. 

Table 4a: Geske PDs Forecast Evaluation for Banking Groups and Luxembourg Banks

Common Component

Coverage Ratio
RMS 
Error

Bias 
Proportion

Variance 
Proportion

Coviance 
Proportion

Common & Idiosyncratic Component

 
 

Q 5%-
95%

Q 10%-
90%

Q 15%-
85%

Q 20%-
80%

Q 25%-
75%

Q 30%-
70%

Q 35%-
65%

Q 40%-
60%

Q 45%-
55%

2nd Month 0.690 0.596 0.512 0.420 0.332 0.259 0.189 0.121 0.055 0.360 0.003 0.000 0.997
3th Month 0.653 0.538 0.450 0.365 0.283 0.223 0.151 0.097 0.043 0.433 0.010 0.000 0.990
4th Month 0.652 0.517 0.434 0.357 0.293 0.237 0.174 0.122 0.061 0.503 0.018 0.000 0.982
5th Month 0.648 0.527 0.434 0.352 0.282 0.214 0.153 0.106 0.048 0.561 0.012 0.001 0.987
6th Month 0.639 0.504 0.412 0.336 0.268 0.202 0.151 0.107 0.061 0.623 0.009 0.005 0.986

1th Month 0.896 0.835 0.738 0.660 0.570 0.452 0.347 0.232 0.118 0.252 0.001 0.002 0.997
2nd Month 0.886 0.805 0.712 0.621 0.522 0.422 0.311 0.212 0.097 0.368 0.000 0.001 0.999
3th Month 0.890 0.792 0.694 0.600 0.511 0.406 0.299 0.196 0.101 0.435 0.001 0.001 0.999
4th Month 0.888 0.788 0.691 0.585 0.496 0.408 0.314 0.213 0.118 0.504 0.002 0.001 0.997
5th Month 0.882 0.789 0.696 0.596 0.510 0.415 0.325 0.210 0.100 0.562 0.000 0.004 0.996
6th Month 0.882 0.806 0.712 0.594 0.491 0.382 0.287 0.197 0.098 0.621 0.000 0.009 0.991

The table reports the coverage ratios, root mean square erros, and the proportions of bias, variance, and covariance respectively from 2010 to 2011 
across all Merton's DPs for both banking groups and luxembourg banks. The coverage ratio is the proportion of banks whose empirical cdf (simulated) 
at each of the observed DDs are within the range of quantiles. 

Table 4b: Merton DD Forecast Evaluation for Banking Groups and Luxembourg Banks

Common Component

Coverage Ratio
RMS 
Error

Bias 
Proportion

Variance 
Proportion

Covariance 
Proportion

Common & Idiosyncratic Component
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2nd Month 0.022 0.025 0.074 0.901 0.020 0.014 0.088 0.899 0.003 0.000 0.008 0.992
3th Month 0.021 0.008 0.217 0.776 0.019 0.003 0.192 0.805 0.003 0.005 0.151 0.844
4th Month 0.023 0.001 0.286 0.713 0.022 0.004 0.270 0.726 0.003 0.032 0.244 0.724
5th Month 0.025 0.000 0.193 0.807 0.023 0.001 0.172 0.827 0.003 0.036 0.244 0.720
6th Month 0.028 0.002 0.033 0.965 0.026 0.002 0.013 0.985 0.004 0.085 0.336 0.579

1th Month 0.017 0.005 0.325 0.670 0.015 0.002 0.279 0.719 0.002 0.023 0.006 0.971
2nd Month 0.024 0.000 0.144 0.856 0.021 0.005 0.102 0.893 0.004 0.081 0.024 0.895
3th Month 0.022 0.003 0.264 0.733 0.020 0.001 0.157 0.842 0.004 0.177 0.289 0.533
4th Month 0.024 0.067 0.383 0.550 0.023 0.022 0.246 0.732 0.004 0.308 0.387 0.305
5th Month 0.027 0.055 0.261 0.684 0.024 0.016 0.171 0.813 0.005 0.289 0.369 0.341
6th Month 0.031 0.031 0.062 0.907 0.027 0.003 0.017 0.981 0.007 0.307 0.397 0.296

1th Month 0.009 0.224 0.043 0.734 0.008 0.229 0.031 0.741 0.001 0.104 0.117 0.779
2nd Month 0.012 0.323 0.028 0.649 0.012 0.359 0.016 0.625 0.002 0.017 0.114 0.869
3th Month 0.014 0.482 0.013 0.505 0.014 0.527 0.006 0.467 0.002 0.029 0.157 0.814
4th Month 0.017 0.464 0.050 0.486 0.017 0.512 0.034 0.454 0.003 0.069 0.211 0.720
5th Month 0.020 0.472 0.081 0.446 0.019 0.528 0.058 0.414 0.003 0.057 0.291 0.651
6th Month 0.021 0.512 0.120 0.369 0.020 0.572 0.087 0.341 0.003 0.055 0.422 0.523

1th Month 0.008 0.240 0.041 0.720 0.008 0.266 0.019 0.716 0.002 0.031 0.133 0.837
2nd Month 0.010 0.330 0.027 0.643 0.011 0.416 0.006 0.578 0.002 0.004 0.085 0.911
3th Month 0.012 0.490 0.019 0.491 0.013 0.605 0.001 0.394 0.002 0.003 0.188 0.810
4th Month 0.015 0.404 0.072 0.524 0.015 0.527 0.031 0.441 0.003 0.000 0.217 0.783
5th Month 0.017 0.378 0.119 0.503 0.017 0.506 0.063 0.432 0.003 0.009 0.268 0.723
6th Month 0.018 0.388 0.181 0.431 0.018 0.523 0.103 0.374 0.003 0.021 0.384 0.595

Variance 
Proportion

Coviance 
ProportionRMS Error

Bias 
Proportion

Variance 
Proportion

Coviance 
Proportion

Table 5a: Geske Total Asset Weighted PDs Forecast Evaluation for Banking Groups and Luxembourg Banks

Variance 
Proportion

Covariance 
Proportion

Groups Geske All Groups Geske ST
RMS Error

Bias 
ProportionRMS Error

Bias 
Proportion

Groups Geske FW

Common Component

Lux Geske All

The table reports the root mean square errors, and the proportions of bias, variance, and covariance respectively from 2010 to 2011 across Geskr's PDs for both banking groups and 
Luxembourg banks. 

Common Component

Common & Idiosyncratic Component

Lux Geske ST Lux Geske FW

Common & Idiosyncratic Component

 
 

2nd Month 0.294 0.000 0.013 0.986 0.061 0.177 0.002 0.821
3th Month 0.334 0.002 0.000 0.997 0.074 0.311 0.001 0.688
4th Month 0.377 0.014 0.001 0.985 0.082 0.446 0.012 0.542
5th Month 0.429 0.002 0.001 0.998 0.091 0.540 0.041 0.419
6th Month 0.466 0.000 0.000 1.000 0.102 0.649 0.080 0.271

1th Month 0.192 0.012 0.016 0.972 0.040 0.001 0.002 0.998
2nd Month 0.299 0.007 0.015 0.979 0.055 0.008 0.000 0.992
3th Month 0.340 0.001 0.000 0.999 0.062 0.027 0.001 0.972
4th Month 0.382 0.001 0.001 0.998 0.062 0.034 0.017 0.950
5th Month 0.442 0.003 0.001 0.996 0.064 0.031 0.071 0.898
6th Month 0.483 0.013 0.000 0.987 0.064 0.056 0.187 0.758

Table 5b: Merton Total Asset Weighted DDs Forecast Evaluation for Banking Groups and Luxembourg Banks

Common Component

Group Merton Lux Merton

Common & Idiosyncratic Component

The table reports the root mean square erros, and the proportions of bias, variance, and covariance respectively from 2010 to 2011 
across Merton's DDs for both banking groups and Luxembourg banks. 

RMS Error
Bias 

Proportion
Variance 

Proportion
Coviance 
Proportion RMS Error

Bias 
Proportion

Variance 
Proportion

Coviance 
Proportion

 
 

 
 
 
 

 
 
 



Figure 1a - Coherence and Phase Angle between Common Components
and Banking Groups' ST PDs 
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Figure 1b - Coherence and Phase Angle between Common Components
and Banking Groups' FW PDs 
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Figure 1c - Coherence and Phase Angle between Common Components
and Luxembourg Banks' ST PDs 
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Figure 1d - Coherence and Phase Angle between Common Components
and Luxembourg Banks' FW PDs
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Figure 2a - Equal Weighted DP Index, Accumulated Common 
Factor and One-period Forecasts for Banking Groups

(Geske ST)
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Figure 2b - Equal Weighted DP Index, Accumulated Common 
Factor and One-period Forecasts for Banking Groups

(Geske FW)
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Figure 2c - Equal  Weighted DP Index, Accumulated Common 
Factor and One-period Forecasts  for Luxembourg Banks

(Geske ST)
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Figure 2d - Equal  Weighted DP Index, Accumulated Common 
Factor and One-period Forecasts for Luxembourg Banks

(Geske FW)

Geske LT Forecasts by Common

Q 10% by Common Q 90% by Common

Forecasts by Common & Idiosyncratic Q 10% by Common & Idiosyncratic

Q 90% by Common & Idiosyncratic Accumulated Common Factor  
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Figure 3a - Asset Weighted DP Index, Accumulated Common 
Factor and One-period Forecasts for Banking Groups

(Geske ST)

Geske ST Forecasts by Common
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Figure 3b - Asset Weighted DP Index, Accumulated Common 
Factor and One-period Forecasts for Banking Groups

(Geske FW)

Geske LT Forecasts by Common
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Q 90% by Common & Idiosyncratic Accumulated Common Factor  
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Figure 3c - Asset Weighted DP Index, Accumulated Common 
Factor and One-period Forecasts  for Luxembourg Banks

(Geske ST)
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Q 90% by Common & Idiosyncratic Accumulated Common Factor  
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Figure 3d - Asset Weighted DP Index, Accumulated Common 
Factor and One-period Forecasts for Luxembourg Banks

(Geske FW)

Geske LT Forecasts by Common

Q 10% by Common Q 90% by Common

Forecasts by Common & Idiosyncratic Q 10% by Common & Idiosyncratic

Q 90% by Common & Idiosyncratic Accumulated Common Factor  
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