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Abstract. Both health and wealth are distributed heterogeneously across the population.

These two dimensions are empirically linked by a robust positive correlation between income

and life expectancy. Yet the mechanisms underlying this link and the implications for eco-

nomic policy remain incompletely understood. This paper develops a life-cycle model with

heterogeneous agents to explore the bidirectional relationship between income and health:

higher income enables greater health investment, while better health enhances productiv-

ity and therefore earnings. We calibrate the model to U.S. data, capturing key empirical

aspects of the distribution of income, health and age-at-death. We show that the income-to-

health channel is more important early in life, while the health-to-income channel dominates

at older ages. We then use this framework to evaluate policies aimed at redistribution or

health. We find that income redistribution, while reducing inequality, weakens individuals’

incentives to invest in health, lowering both average life expectancy and aggregate income.

In contrast, health subsidies enhance health, raising both longevity and economic output,

without reducing income inequality.
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Résumé non technique

L’évaluation stratégique 2025 de la BCE considère le vieillissement démographique comme

un défi pour la conduite de la politique monétaire. En effet, le vieillissement a des effets sur

la productivité, la croissance économique, les finances publiques et l’inflation. Ce papier se

concentre sur le lien entre richesse et espérance de vie, qui est observable dans tous les pays

et qui reste stable dans le temps. La richesse et la santé sont liées de plusieurs façons. La

richesse peut améliorer la santé, par exemple en facilitant l’accès aux soins ou à une meilleure

alimentation. Inversement, la santé influence la capacité à travailler et donc à gagner sa vie.

D’autres facteurs, comme l’éducation ou les gènes, peuvent aussi jouer un rôle à la fois sur

la santé et les revenus.

Mieux comprendre les liens entre revenus et santé est important pour évaluer correctement

l’impact des impôts et de la redistribution sur la santé publique. De même, ces liens

déterminent l’impact que peut avoir une politique de santé pour réduire les inégalités de

revenu. Ces inégalités peuvent réduire l’efficacité de la politique monétaire, qui peut elle-

même influencer les inégalités.

Dans ce papier, nous étudions la relation revenus-santé à l’aide d’un modèle de cycle de vie.

En vieillissant, un individu voit son niveau de santé se détériorer progressivement : c’est

ce que nous appelons le ‘déficit de santé’. Ce déficit a trois effets négatifs : il coûte cher

en soins (soins longue durée, traitements, etc.), il réduit la productivité et donc les salaires,

et il augmente le risque de décès. Cependant, les individus peuvent ralentir ce déficit en

investissant dans la prévention (alimentation saine, sport, vaccins, dépistage...).

Ainsi, notre modèle inclut un effet de la santé sur le revenu : une mauvaise santé réduit

les salaires. Il inclut aussi l’effet inverse : les plus riches peuvent investir davantage dans

la prévention. Bien que ces deux effets soient connus, la plupart des modèles existants n’en

retiennent qu’un seul à la fois.

Notre modèle reproduit bien la corrélation entre revenu et espérance de vie qui est observée

dans les données. Il suggère aussi que l’effet du revenu sur la santé est plus fort au début

de la vie. À ce moment-là, les individus dont le revenu est plus élevé investissent davantage

dans la prévention, restent en meilleure santé et gagnent plus par la suite. Plus tard, la santé

devient plus inégale selon les décisions prises plus tôt, et influence davantage les revenus.

Nous utilisons ensuite le modèle pour étudier deux types de politiques : des redistributions
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de revenus (comme les aides forfaitaires) et des politiques ciblant la santé (comme les sub-

ventions à la prévention). Toutes sont financées par un impôt proportionnel sur le revenu

du travail.

La subvention santé réduit le prix relatif de la prévention. Cela améliore la santé de tous,

et donc la productivité, les salaires et l’espérance de vie. Ces effets vont dans le sens des

données empiriques. Cependant, une subvention santé ne saurait pas diminuer les inégalités.

Par contre, une politique de redistribution des revenus réduit non seulement les écarts de

revenu, mais aussi les inégalités de santé. Par conséquent, elle décourage aussi la prévention.

En effet, la redistribution affaiblit le lien entre santé et revenu, et donc réduit l’intérêt

d’investir dans sa santé. Cela réduit le niveau de santé dans la population, ainsi que le

niveau de revenu moyen et l’espérance de vie.

Notre recherche montre donc que des politiques de santé peuvent aussi impacter la situation

économique des agents, et vice-versa.
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1. Introduction

The rich live longer. This strong correlation between income and life expectancy persists

over time and across countries (see e.g., Kitagawa and Hauser, 1973; Smith, 1998; Cutler

et al., 2006, 2011). In the United States, for example, 40-year-old women (men) in the top

percentile of the income distribution can expect to live 15 (10) years longer than those in

the bottom percentile (Chetty et al., 2016). Disparities in life expectancy are not limited to

the gap between the very rich and the very poor; they follow a smooth gradient.

Income and life expectancy are linked through multiple channels (Deaton, 2002; Chandra and

Vogl, 2010; Cutler et al., 2011; Baker and Stabile, 2012). For example, income could affect

health by enabling access to better medical care and nutrition, while health might affect

income by shaping one’s ability to work and earn a higher wage. In addition, income and

health might be correlated with other factors, such as education and habits, often inherited

from university-educated and wealthy parents. In fact, all possibilities might be operating

simultaneously.

Better understanding the relationship between income and health is important for the design

of government policy. For instance, clarifying how income affects life expectancy is essential

to assess whether taxes and income redistribution can promote public health. Likewise,

understanding how health influences income is also key to evaluating the role of health

policy in reducing income inequality.

We address these issues using a continuous-time life-cycle model with heterogeneous agents,

in which both life expectancy and income are endogenous. As individuals age, they experi-

ence adverse health events that accumulate over time and are collectively referred to as the

health deficit (Mitnitski et al., 2002). This health deficit is harmful for three reasons. First,

it generates medical costs, including long-term care, curative treatments, and palliative ser-

vices. Second, empirical evidence shows that the health deficit reduces labor productivity

and therefore wages. Third, it increases the risk of death. Indeed, since biological age is

malleable (see Scott, 2023, and references therein), we assume that individuals do not die

from age itself, but because of declining health: the time of death is a random variable whose

distribution depends on the individual’s health deficit.

To counteract these adverse effects, individuals can slow the accumulation of health deficits

by investing in preventive care – measures aimed at avoiding diseases and risk factors (e.g.,

vaccination, a healthy diet, or regular exercise) or detecting illnesses early (e.g., screening).
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Thus, our paper contributes to the tradition launched by the seminal contributions of Gross-

man (1972) and Ehrlich and Becker (1972), treating health as an investment good whose

accumulation required effort and resources.

Our framework therefore features a health-to-income channel, as individuals in poorer health

earn lower wages. In addition, it captures the reverse income-to-health channel, since wealth-

ier individuals have more resources to invest in preventive care. While the existence of both

channels is well-recognized, most structural models consider only one at a time, usually the

health-to-income channel (see Section 2 below).

We proceed in two steps. First, we study a setup in which individuals are identical ex-

ante and differ only ex-post due to the randomness of their time of death. We calibrate

this ‘median-individual’ model to U.S. data, drawing primarily from the National Health

Interview Survey and the Medical Expenditure Panel Survey, along with actuarial data from

the Human Mortality Database. We validate this model by showing that it provides a good

approximation of key patterns in mortality risk and income. However, because individuals are

identical ex-ante, all t-year-olds earn the same income and face the same life expectancy. As

a result, the model cannot replicate the smooth gradient between income and life expectancy

documented in the data.

Therefore, in a second step, we introduce ex-ante heterogeneity in health and in income.

First, individuals may differ in their initial health deficit, reflecting characteristics shaped

by genetics or early-life conditions (see e.g., Deaton, 2002; De Nardi et al., 2024, for empir-

ical evidence on the lasting impact of early-life factors on health and economic outcomes).

Second, individuals may also differ in the permanent component of their labor productivity,

capturing variations in work ethic, cognitive ability, or access to quality education and pro-

fessional networks (see e.g., Becker, 1994, for evidence on the role of schooling and ability in

generating earning differences over the life cycle).

We find that either source of ex-ante heterogeneity generates a meaningful quantitative

relationship between income and life expectancy. Differences in initial health affect life ex-

pectancies but also income over the life cycle. Likewise, differences in initial productivity

result in distinct income, health investments and hence life expectancies. Moreover, when

these two sources of ex-ante heterogeneity are combined, the model suggests that a 10%

increase in income at age 50 is associated with a rise in life expectancy of just over one

and a half years. Because the model assumes rational expectations and includes no stochas-

tic shocks aside from mortality, the resulting life-expectancy-income gradient is somewhat

steeper than existing empirical estimates (Chetty et al., 2016).

In addition, our model supports the hypothesis put forward by Smith (1998) and Cutler

et al. (2011) that the causal links between health and income might vary over the life cycle.
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Specifically, we find that income has the greatest influence on health early in life, when

the incentives to invest in preventive care are strongest. As a result, young and wealthy

individuals invest more heavily in prevention, allowing them to maintain better health and

earn higher incomes later on. In adulthood, however, health becomes more heterogeneous,

reflecting earlier investment decisions, and thus plays a more central role in determining

income.

We then use this framework to evaluate the effects of redistributive and health-targeted

policies. As a health-targeted policy, we consider a subsidy for preventive care. As a redis-

tributive policy, we examine income redistribution through lump-sum transfers – specifically,

a universal basic income. Both policies apply uniformly across the population, regardless of

age, health status, or income level. The government finances these expenditures through a

proportional tax on labor income. Importantly, these two policies have opposing effects on

the relationship between income and health.

More precisely, the health subsidy encourages greater preventive care in youth by reducing its

relative price. This leads to a healthier population across all cohorts, as healthier individuals

in youth translate into healthier individuals in old age. Hence, labor productivity, wages,

and life expectancy increase for the entire population. These effects are intuitive and align

with empirical findings on the Affordable Care Act, which expanded access to affordable

coverage (Sullivan et al., 2024). This expansion reduced mortality, with the strongest effects

for causes of death amenable to medical care (Borgschulte and Vogler, 2020; Miller et al.,

2021). Although less is known about the impact of the Affordable Care Act on productivity

and wealth, evidence suggests substantial improvements in financial well-being (Miller et al.,

2021) and greater labor market flexibility for men with chronic conditions (Connolly et al.,

2024).

Turning to the universal basic income, this reduces inequality in disposable income, particu-

larly among older individuals, where health disparities contribute most to labor income gaps.

This aligns with recent evidence suggesting that a $1000 monthly universal basic income in

the U.S. would reduce employment and output but lower disposable income inequality (Ludu-

vice, 2024). Our model adds a further insight: by compressing income inequality, a universal

basic income also narrows the dispersion in preventive care during youth, thereby reducing

the spread in age at death.

However, the universal basic income also discourages preventive care in youth. As noted

earlier, one reason to invest in prevention is to boost labor productivity and, in turn, in-

come. Since lump-sum transfers are unrelated to health and funded by a labor income tax,

they weaken the link between health and income, reducing the incentive to invest in pre-

ventive care. This results in a less healthy population across all cohorts, with lower wages
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and shorter life expectancy. Hence, our analysis echoes Deaton (2002) in challenging the

widespread belief that one of the most effective means of reducing mortality is to eliminate

social inequalities by redistributing income.

We conclude with two extensions. First, to keep the baseline model as simple as possible,

we initially assumed the absence of any savings mechanism. We now relax this assumption

by introducing a risk-free asset that allows agents to transfer resources over time. We show

that access to a risk-free asset has similar implications for the income-health relationship

as a preventive care subsidy. Both mechanisms encourage greater health investment at a

younger age: the subsidy does so by lowering the relative price of preventive care, while the

risk-free asset enables individuals to borrow against future income. Since roughly 40% of

the U.S. population lives hand-to-mouth (Aguiar et al., 2024), often due to limited access to

financial services (see Section 8), our model suggests that a health subsidy could help offset

the adverse effects of such borrowing constraints.

Second, we examine an alternative to universal basic income: a redistributive policy imple-

mented through a pay-as-you-go (PAYG) pension system. As expected, this policy qualita-

tively affects the income-health gradient in a manner similar to basic income. In both cases,

individuals are less inclined to invest in preventive care, as these policies insulate old-age

disposable income from the consequences of poor health, potentially leading to poorer health

outcomes later in life.

The remainder of the paper is organized as follows. Section 2 reviews the literature. Section

3 lays out the continuous-time setup used for quantitative analysis. Section 4 describes our

estimation and calibration procedure. Sections 5 and 6 present the main quantitative results,

while Section 7 tests their robustness. Section 8 concludes.

2. Literature review

2.1. Empirical literature. As mentioned earlier, there is a strong, persistent correlation

between income and life expectancy, with richer individuals living significantly longer lives

(Chetty et al., 2016). This gradient holds across countries and throughout the income dis-

tribution (Deaton, 2016). However, disentangling causality is difficult, as income and health

influence each other through multiple channels, and shared determinants like education may

confound the relationship (Deaton, 2002; Chandra and Vogl, 2010; Cutler et al., 2011; Baker

and Stabile, 2012).

To illustrate, Panel A in Table 1 highlights the protective effects of parental income on self-

reported health status later in life (a higher score indicates worse health, on a scale from

1 to 5) using data from the 2022 Health and Retirement Study (HRS). These figures echo

Case and Paxson (2002), who study how parental behavior and socioeconomic status affect
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Table 1. On the links between health and income

Panel A Family income from birth to age 16

(Source: 2022 HRS) Low Medium High

Self-reported health at (approx.) 60 years 3.3 3.0 2.7

Panel B Difficulties with mobility, communication or cognition

(Source: 2023 NHIS) Onset before 22 Onset after 22 None

Prob. below the poverty threshold 26.5 20.1 8.7

Panel C Education Level

(Source: 2023 NHIS) Below college Above college

Prob. of smoking regularly 11 7

Prob. of working last week 47.1 63.2

Notes. HRS refers to the Health and Retirement Study (over 2,300 survey respondents), and NHIS refers

to the National Health Interview Survey (over 29,000 survey respondents). In Panel A, self-reported health

is measured on a scale from 1 (excellent) to 5 (poor). Panel B reports the probability of being below the

poverty threshold by age of disability onset. Panel C shows the probability of smoking regularly and the

probability of employment in the past week, both by education level.

children’s health, exploiting the fact that child health is unlikely to influence family income.

Their results align with other studies showing that children from low-income households

tend to have lower birth weights, a higher likelihood of being born prematurely, and an

increased risk of chronic health conditions as they grow older (Brooks-Gunn and Duncan,

1997; Newacheck and Halfon, 1998; Currie, 2009).

In turn, Panel B in Table 1 highlights the damaging effects of early-onset disabilities on

economic well-being using data from the 2023 National Health Interview Survey (NHIS).

Individuals whose difficulties with mobility, communication, or cognition began before age

22 are three times more likely to live below the poverty threshold later in life than those

without such difficulties. This message echoes the literature showing that healthier children

become wealthier adults. For example, Behrman and Rosenzweig (2004) and Black et al.

(2007) show that lower birthweight babies face worse outcomes, both in the short run, in

terms of one-year mortality rates, and in the longer run, in terms of labor market payoffs.

Similarly, Almond (2006) uses the 1918 influenza pandemic as a natural experiment to reveal

how improving fetal health can enhance the future human capital of these babies.

Lastly, Panel C highlights how third factors – education in this case – help determine both

health and wealth, using data from the 2023 NHIS. The first row indicates that individuals

with higher levels of education are less likely to smoke, consistent with Grimard and Par-

ent (2007); de Walque (2010). Along the same lines, Lleras-Muney (2005) provides strong

empirical evidence of the significant causal impact of education on mortality. In addition,
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Mackenbach (2006) and Cutler et al. (2011) shows that more educated individuals in Eu-

rope and the United States report better health and face lower mortality risks. Glied and

Lleras-Muney (2008), in turn, find that more educated individuals are better positioned to

take advantage of medical breakthroughs, reducing their mortality risk for diseases. As for

the second row of Panel C, it stresses that individuals with higher levels of education are

more likely to be employed. This is a well-established fact: better-educated individuals earn

higher wages, face lower unemployment rates, and hold more prestigious occupations than

those with less education (see e.g. Card, 1999, and references therein).

On the whole, reverse causation and omitted variable bias complicate the identification of

the causal links between health and income. Furthermore, these links may change with age

(Smith, 1998; Cutler et al., 2011). Income might have the greatest impact in childhood when

health levels and trajectories are set, while in adulthood, health might play a larger role in

shaping income. Empirical evidence supports this view. On the one hand, studies using

exogenous wealth and income shocks – such as recessions, lottery winnings, inheritances,

and unexpected policy changes – find weak effects on adult health (see e.g., Ruhm, 2000,

2005; Kim and Ruhm, 2012; Apouey and Clark, 2015; Cesarini et al., 2016; Erixson, 2017).

As discussed earlier, however, parental income seems to have a strong protective effect on

children’s health. On the other hand, among adults, the negative impact of poor health on

wealth explains a significant part of the correlation between the two. For example, Smith

(1998) estimates that a severe illness reduces total household wealth by about 8% on average.

Furthermore, negative health shocks are strong predictors of retirement and reduced labor

force participation (Smith, 2004, 2005; Case and Deaton, 2005).

2.2. Theoretical literature. There is growing interest in models that incorporate health

dynamics. For example, using an estimated life-cycle setup, De Nardi et al. (2024) show that

individual losses from poor health are substantial and largely driven by factors determined

early in life. Also worth noting, Capatina (2015) highlights how poor health contributes

to income inequality primarily through lower productivity and lost time rather than higher

medical expenditures. In turn, Hosseini et al. (2025) argue that disability programs are the

main channel through which health inequality generates lifetime earnings inequality. Low

and Pistaferri (2015) also study disability programs, evaluating their welfare implications by

weighing incentive costs against insurance benefits. Unlike our work, these studies assume

that health, and therefore survival probabilities, is exogenous, so they cannot assess the

impact of policy interventions on health dynamics (Pashchenko, 2025).

Ozkan (2025) does allow individuals to affect the distribution of health shocks by investing

in preventive health capital, thereby influencing their life expectancy. The author argues

that public insurance, which covers large curative expenditures, widens the life expectancy

gap by reducing the poor’s incentives to invest in preventive health. However, unlike our
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work, this study assumes that labor productivity, and therefore income, is exogenous over

the life cycle.

A few recent papers examine how health influences economic circumstances and vice versa.

Mahler and Yum (2024) develop a heterogeneous-agent life-cycle model where health and

wealth evolve endogenously. Using German microdata, they argue that if all individuals

adopted the same age-specific health effort level, wealth inequality would decline by roughly

50%. In their framework, wealthier individuals invest more in health-promoting activities,

leading to better health outcomes and higher labor income – a mechanism consistent with

our setup. Another study worth noting is by Cole et al. (2018), who examine both the health-

to-income and income-to-health channels. They analyze the trade-off between limiting the

extent to which wages and insurance premiums can depend on a worker’s health status and

the resulting reduction in household incentives to maintain health. Their findings suggest

that while health-related risks in labor and insurance markets justify strong social insurance

(about 80% coverage), fully severing the link between wages and insurance premiums and

health status is suboptimal, as the long-term adverse effects on health effort outweigh the

short-term consumption insurance benefits.

These papers differ significantly from ours in both their formulation and research question.

For example, we follow Dalgaard and Strulik (2014) and Hosseini et al. (2022) by using a

frailty index to measure health and treating it as a continuous variable rather than using

a categorical variable (e.g., good vs. bad health). In addition, our analysis focuses on how

different policy interventions – specifically, health subsidies and a universal basic income –

affect the strength of the health-to-income and income-to-health channels, and how these

channels shape the income-longevity gradient.

3. Baseline Continuous-time Life-cycle Model

In this section, we present our baseline continuous-time life-cycle model. For simplicity,

this baseline setup assumes that all individuals are identical ex-ante and differ only in their

time of death. This assumption helps map the model to the data. Section 5 will relax this

assumption by introducing ex-ante heterogeneity in both income and health.

3.1. Setup. Let d(t) represent an individual’s health deficit, which evolves according to the

following law of motion

ḋ(t) = γd(t)− Ah(t)β

β
, (1)

d(0) = d0 , (2)

where d0 is a strictly positive parameter. Equation (1) captures a simple dynamic: as an

individual ages, her health deteriorates, reflected by the accumulation of the health deficit at
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a rate γ > 0. However, preventive care, h(t), slows down this process. In its most restrictive

definition, preventive care includes activities aimed at preventing diseases and risk factors

(e.g., vaccination) or early disease detection (e.g., screening). A broader definition might

encompass lifestyle changes that promote better health, such as maintaining a healthy diet

and engaging in regular exercise. The parameter A > 0 governs the effectiveness of pre-

ventive care, while β ∈ (0, 1) introduces diminishing returns to scale, as in Dalgaard and

Strulik (2014). This reflects the principle that as preventive care efforts increase, each addi-

tional intervention yields a smaller marginal improvement in health. For example, repeated

screenings for the same cancer type within a short period provide little added value.

The individual’s lifespan extends from 0 to T , where T is a random variable. The probability

law governing T is defined by the hazard rate λ(t, d(t)) ≥ 0, which is a C1-function in

both arguments.1 When calibrating the model, we expect both first partial derivatives to

be positive, as the likelihood of death increases with both age and the individual’s health

deficit (Scott, 2023). For example, in colorectal cancer, younger patients in the US tend to

have better survival rates than older patients, even at the same stage of diagnosis (Cheng

et al., 2021). Similarly, five-year net survival is highest in the youngest adults in the UK for

nearly all cancers, with survival generally decreasing with increasing age (Office for National

Statistics, 2013).

Given the probability law governing the time of death, the likelihood of being alive at age t is

Λ(t) = e−
∫ t
0 λ(u,d(u))du, which starts at 1 at birth and decreases monotonically as the individual

ages. We prevent unjustifiably long lifespans by imposing an exogenous maximum health

deficit d̄ > d0; if the individual reaches d̄, she passes away immediately. Consequently, the

maximum attainable age, T̄ , is implicitly determined by d(T̄ ) = d̄.

At each instant t ∈ [0, T ], the individual supplies one unit of labor inelastically, earning a

wage y(t, d(t)) > 0, which is a C1-function in both arguments (see Appendix A for the firm

maximization problem). When calibrating the model, we expect the partial derivative of

earnings with respect to the first argument to be positive, reflecting the general pattern of

rising earnings as individuals advance in their careers. In contrast, we expect the partial

derivative with respect to the second argument to be negative, as poor health tends to

lower income, due to factors such as involuntary unemployment, reduced productivity, or

early retirement (see Section 2). As we shall see, these two forces together will generate the

hump-shaped earnings profile observed in the data.

The individual’s budget constraint is

c(t) + θ(h(t) +Bd(t)) = y(t, d(t)) , (3)

1As a result, the cumulative probability function is F (t) = 1− e−
∫ t
0
λ(u,d(u))du and the probability density

function is f(t) = ∂F (t)/∂t = λ(t, d(t)) e−
∫ t
0
λ(u,d(u))du. The hazard rate is f(t)/(1− F (t)) = λ(t, d(t)).
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where c(t) represents consumption and θ > 0 is the relative price of medical-related activities.

The term B is a positive parameter that captures the monetary cost associated with the

health deficit, θBd(t). These costs represent pure expenditures with no direct effect on the

health deficit and can be viewed as expenses related to long-term care (e.g., nursing, home

care) as well as curative and palliative care.

The individual’s expected lifetime utility is∫ T̄

0

e−ρtΛ(t) [ln c(t) + α] dt. (4)

Here ρ ≥ 0 is the discount rate and α ≥ 0 is a technical constraint ensuring that utility

flows remain strictly positive over the life-cycle. Otherwise, the individual would prefer an

earlier death, as continuing life would result in negative utility (see for instance Dragone and

Strulik, 2020, for a similar discussion).

The individual chooses sequences {c(t), h(t)}T̄t=0 to maximize (4), subject to (1)-(3) and the

endogenous hazard rate λ(t, d(t)).

3.2. Solution. We solve our stochastic control problem by reformulating it as an equivalent

deterministic control problem (see Boukas et al., 1990, for mathematical proofs). As men-

tioned earlier, the probability that the individual is alive at time t is Λ(t) = e−
∫ t
0 λ(u,d(u))du.

Hence, we have Λ̇(t) = −λ(t, d(t))Λ(t) with Λ(0) = 1, allowing us to write the Hamiltonian

function

H(t) = e−ρ t Λ(t) [ln c(t) + α]− q̃(t)

[
γd(t)− Ah(t)β

β

]
−p̃(t)λ(t, d(t))Λ(t) + ϵ̃(t) [y(t, d(t))− c(t)− θ(h(t) +Bd(t))] .

Here −q̃(t) is the shadow price of health deficit and measures the value of an infinitesimal

increase in d(t). Similarly, p̃(t) is the shadow price of the probability of survival, better

known as the value-of-life-saving (Schelling, 1968; Mishan, 1971). It measures the remaining

lifetime utility along the optimal path from t to T̄ . Lastly, ϵ̃(t) measures the change in the

optimal value of the utility function per unit of change in the budget constraint. Economic

logic suggests that all three co-state variables {q̃(t), p̃(t), ϵ̃(t)} should be positive.

Applying the maximum principle to H(t) yields{
Hh = 0 , Hc = 0 , Hϵ̃ = 0 ,

Hd = ˙̃q(t) , HΛ = − ˙̃p(t) , H−q̃ = ḋ(t) , Hp̃ = Λ̇(t) .

These necessary optimality conditions are standard in deterministic control theory. Further-

more, the concavity of the utility function ensures that these necessary conditions are also

sufficient. Let q(t) := eρ t q̃(t)/Λ(t), ϵ(t) := eρ t ϵ̃(t)/Λ(t) and p(t) := eρ t p̃(t). The optimal
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control system must thus solve the following system of nonlinear differential equations



ḋ(t) = γd(t)− Ah(t)β

β
,

Λ̇(t) = −λ(t, d(t))Λ(t),

q̇(t) = [ρ+ λ(t, d(t))− γ] q(t)− λd(t, d(t))p(t) + ϵ(t) [yd(t, d(t))− θB] ,

ṗ(t) = [ρ+ λ(t, d(t))] p(t)− [ln c(t) + α] ,

(5a)

(5b)

(5c)

(5d)

together with the three intratemporal conditions



c(t) =
1

ϵ(t)
,

h(t) =

(
Aq(t)

θϵ(t)

) 1
1−β

,

y(t, d(t)) = c(t) + θ(h(t) +Bd(t)) .

(6a)

(6b)

(6c)

Solving the above system of differential equations requires a set of boundary conditions,

which in our setup are naturally given by

d(0) = d0, Λ(0) = 1, d(T̄ ) = d̄ , p(T̄ ) = 0.

The first three conditions have been previously introduced. As for the last condition, it

ensures that the remaining lifetime utility at the maximum attainable age T̄ is zero, which

must be the case since the objective function does not include any bequest terms. Lastly,

since T̄ is free, it must be endogenously determined by H(T̄ ) = 0 (see e.g., Seierstad, 2009,

for a formal derivation).

Unfortunately, there is no closed-form solution to this nonlinear boundary value problem.

Therefore, after selecting all parameter values, the next section will solve it numerically using

the collocation method proposed by Shampine et al. (2003).

3.3. Stationary distribution. So far, we have described the optimization problem for a

single individual. However, as will become clear, calibrating the model requires considering

the stationary population distribution. Hence, we assume that at each instant, a new cohort

of size 1 is born, represented by n(0) = 1. Since in the baseline model all individuals

are identical and face the same optimization problem, population dynamics are captured

by ṅ(t) = −λ(t, d(t))n(t) = Λ̇(t). Thus, Λ(t), which indicates the probability of a single
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Table 2. Model parametrization

Parameter Value Description Parameter Value Description

A priori chosen parameters

α 3 Constant utility flow θ 1 Relative price of care

β 0.5 Decreasing returns to h

Parameters estimated from the data

λ0 −0.08 Hazard rate: scaling λ1 0.02 Hazard rate: sensitivity age

λ2 3.6 Hazard rate: sensitivity health ρ 1 Discount rate

d0 0.02 Initial deficit d̄ 0.31 Maximum deficit

µ0 3 Income: scaling µ1 1 Income: sensitivity age

µ2 −20 Income: sensitivity health γ 0.75 Natural deficit growth

Parameters calibrated within the model

A 0.007 Efficiency of prevention B 1.87 Cost of deficit

Notes. t = 0 in the model corresponds to the age of 20 years, and t = T̄ corresponds to the age of

105 years. Since our calibration implies that T̄ = 4.3, one unit of time in the model corresponds

to (105− 20)/4.3 ≈ 20 years.

individual being alive at age t, also represents the size of the population aged t in the

stationary equilibrium.

Therefore, the first moment of the distribution of age at death, referred to as life expectancy,

is

µT =

∫ T̄

0

tλ(t, d(t))Λ(t) dt+ T̄

[
1−

∫ T̄

0

λ(t, d(t))Λ(t)dt

]
.

The first term integrates over ages up to the maximum admissible age, weighting each age

by its density, λ(d(t))Λ(t). The second term adjusts for the probability of surviving to the

maximum age, T̄ . Similarly, the variance of age at death is

σ2
T =

∫ T̄

0

(t− µT )
2λ(t, d(t))Λ(t) dt+ (T̄ − µT )

2

[
1−

∫ T̄

0

λ(t, d(t))Λ(t)dt

]
.

Lastly, for future reference, the share of total resources spent on healthcare is

H =
θ
∫ T̄

0
[h(t) +Bd(t)] Λ(t) dt∫ T̄

0
y(t, d(t))Λ(t) dt

.

4. Mapping the Baseline Model to the Data

We select parameter values to align the model with key observations from the US in 2022

and 2023. We group the model parameters into three sets: a subset determined a priori,

{α, β, θ}; a subset estimated directly from data, {ρ, d0, d̄, γ, λ(·), y(·)} ; and a subset cali-

brated within the model to minimize the distance between data targets and model outcomes,

{A,B}. Table 2 summarizes the calibration.
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4.1. A priori chosen parameters. We set the scaling parameter α, governing the constant

flow of utility, to 3. This choice ensures positive utility flows everywhere, thereby ruling

out any preference-for-death scenario. Next, we set the parameter β, governing diminishing

returns to preventive care, to 0.5. Consequently, given q(t) and d(t), ϵ(t) becomes the unique

positive solution to the quadratic equation derived by substituting equations (6a) and (6b)

into (6c). Lastly, we normalize the relative price of medical care, θ, to 1.

4.2. Parameters estimated from the data.

4.2.1. Discount rate, ρ. We think of t = 0 as the age at which an individual reaches adult-

hood, setting its empirical counterpart to age 20. Based on the 2022 actuarial life table from

the Human Mortality Database, only 0.2% of individuals live to age 105, so we set 105 as

the empirical counterpart for the model’s maximum admissible age, T̄ .2 Assuming an annual

time discount factor of 0.95 and normalizing ρ = 1, the following relationship must hold

e−T̄ ≈ 0.95(105−20).

However, T̄ is determined as part of the model’s solution rather than set as a fixed parameter.

Therefore, we retain the above equation as a condition to match (i.e. T̄ ≈ 4.3) when setting

the third subset of parameters.

4.2.2. Health deficit bounds, {d0, d̄}. We follow Mitnitski et al. (2002) and Hosseini et al.

(2022) and measure an individual’s health status as her cumulative number of health prob-

lems. The index, here termed the health deficit, is defined as the ratio of a person’s accu-

mulated health issues to the total number of conditions considered.

To construct the health deficit index used throughout our paper, we use data from the

2023 National Health Interview Survey (NHIS), which provides a sample of over 29,000 in-

dividuals after restricting ages to 18 to 85. We consider 17 health conditions, all requiring

a medical diagnosis to prevent variations in pain thresholds from affecting the index: hy-

pertension, high cholesterol, coronary heart disease, angina pectoris, myocardial infarction,

stroke, asthma, cancer, diabetes, chronic obstructive pulmonary disease, arthritis, dementia,

hepatitis, epilepsy, Crohn’s disease, ulcerative colitis, and psoriasis. We weight all health

conditions equally, so incurring one additional health condition increases one’s deficit by

1/17 or 6%.

After computing the health deficit for each individual in our sample, we group individuals

by age and calculate the mean health deficit for the average person within each age range.

To smooth out any abrupt spikes, we apply a four-year backward moving average. The solid

blue line in the left panel of Figure 1 plots the resulting index, which is a convex function

of age, as found in Mitnitski et al. (2002) and Hosseini et al. (2022). This index grows at

2For context, 2% of individuals reach the age of 100.
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Figure 1. Health deficit and income as a function of age

Notes. In the left panel, the health deficit is the ratio of accumulated health issues to the total conditions

considered. The blue lines show the mean health deficit for the full sample, the red dotted line for individuals

self-reporting good health, and the dashed yellow line for those self-reporting poor health. The shaded area

indicates the 25th and 75th percentiles. These health deficit indexes are based on a sample of over 29,000

individuals from the 2023 NHIS. The right panel follows the same color code and is based on a sample of

over 22,000 individuals from the 2022 MEPS.

an average annual rate of roughly 3%, consistent with figures documented in studies from

Australia, Canada, Sweden, and the United States (Rockwood and Mitnitski, 2007). For

future reference, the red dotted line shows the mean health deficit for individuals reporting

good health, and the dashed yellow line for those reporting poor health.3 As expected,

self-reported health aligns closely with our index: individuals reporting bad health have a

significantly higher health deficit throughout the life cycle than those reporting good health.

As mentioned earlier, we think of t = 0 as the age at which an individual reaches adulthood

(20 years). Therefore, we set d0 to 0.02, matching the mean health deficit for individuals

aged 20 in the data. Calibrating d̄, representing the mean health deficit at age 105, is more

challenging, as our data only includes individuals up to age 80. To overcome this problem,

we follow Mitnitski et al. (2002) and fit the exponential regression

d(t) = θ0 + θ1e
θ2t, t ∈ [20, 80],

3The NHIS asks individuals to rank their health from excellent to poor. We classify those reporting

excellent, very good, or good health as being in good health and those reporting fair or poor health as being

in bad health.
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yielding θ∗0 = −0.09 [−0.13,−0.05], θ∗1 = 0.07 [0.04, 0.11], and θ∗2 = 0.016 [0.01, 0.02] with

95% confidence intervals in brackets. The fit is strong, with a root mean square error below

0.01, so we set d̄ = θ∗0 + θ∗1e
θ∗2105 ≈ 0.31.

4.2.3. Natural growth of health deficits, γ. As mentioned earlier, parameter γ represents the

natural growth rate of the health deficit – its rate of increase in the absence of medical care

(see equation 1). Identifying γ from the data is challenging, so we take a holistic approach,

which requires a brief detour.

At the turn of the 20th century, the health care industry was not the economic behemoth it

is today. In 1900, medical care accounted for just 2.5% of total GDP and employed roughly

one in a hundred workers (see Table 3). By contrast, it now makes up nearly one-fifth of

total GDP and employs almost one in ten workers. Over this period, medical advances and

new therapeutics have reduced mortality and improved human well-being (Preston, 1975;

Cutler et al., 2006), marking a departure from an era when doctors had limited training,

the causes of diseases were poorly understood, and hospitals were often places where people

went to die (Catillon et al., 2018). Against this backdrop, assuming that in 1900 the share

of personal income spent on medical care (h), the efficiency of medical care (A), or both

were almost nil seems reasonable (see Dalgaard and Strulik, 2014, for a similar logic). This

assumption implies that in 1900, health deficits evolved by

ḋ(t) = γd(t) ⇒ d(t) = d0e
γt.

In words, the evolution of the health deficit in 1900 depended solely on d0 and γ. We

view these as biological parameters – fundamental to the human body and unaffected by

socioeconomic conditions of the time. One might argue that nutrition, public health, or

environmental factors could influence them, but the magnitude and direction of such effects

are unclear. Given this uncertainty – which lies beyond the scope of this paper – we assume

these parameters have remained constant over the past 125 years.

Table 3. Age at death distribution and health industry indicators for 1900

and 2022

Health industry (in %) Age at death distribution (in years)

Expenditures to GDP Health to total employment Mean Median 90th percentile

1900 2.5 1.2 48 57 82

2022 17.3 9.3 78 82 94

Notes. Data on the age-at-death distribution in 1900 are from Bell and Miller (2005), while data for 2022 are

from the HMD. Information on the health industry in 1900 is from Catillon et al. (2018). Health expenditures

as a share of GDP in 2022 come from the National Health Expenditure Fact Sheet (2022), and data on health

care employment in 2022 are from the U.S. Bureau of Labor Statistics.
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What has certainly changed over time is the distribution of age at death (see e.g. Lutz and

Kebede, 2018, and references therein). Life at the turn of the 20th century was much shorter

than it is today: life expectancy has increased by more than 60%, with the 90th (50th)

percentile of the age-at-death distribution rising by 12 (25) years (see Table 3). Against

this backdrop, assuming that the maximum admissible age in 1900 (identified in subsection

4.2.1 with the 99.8th percentile of the distribution) was 10 years lower than in 2022 seems

reasonable. This assumption implies that in 1900, the maximum admissible age was 95 years,

which in our model units translates to T̄ 1900 = (95− 20)× 4.3/(105− 20) ≈ 3.8.

In sum, we characterize the dynamics of the health deficit in 1900 by

d(t) = d0e
γt,

d(T̄ 1900) = d̄,

yielding

γ =
1

T̄ 1900
ln

d̄

d0
≈ 0.75.

That is, the natural growth rate of the health deficit depends on the maximum admissible

age in 1900, as well as on d0 and d̄. In line with the discussion above, we assume that the

maximum number of health disorders the human body can sustain, d̄, has remained constant

over the past 125 years.

4.2.4. Income process, y(t, d(t)). Using data from the 2022 Medical Expenditure Panel Sur-

vey (MEPS), which includes over 22,000 individuals, the solid blue line in the right panel

of Figure 1 shows average income by age, normalized to 1 at age 20. Income follows a

hump-shaped pattern, rising early in life, peaking in middle age, and declining as individuals

reduce work hours or retire.

In turn, the dotted red and yellow lines show income by age for individuals self-reporting

good and bad health, respectively.4 Consistent with Section 2, individuals in bad health

earn significantly less than those in good health. The gap widens with age, peaks around 50

(with income nearly twice as high for those in good health), and then narrows slightly.

We specify the functional form for y(t, d(t)) as

y(t, d(t)) = µ0 + µ1t+ µ2d(t), (7)

4The MEPS asks individuals to rank their health from excellent to poor, just like the NHIS. We classify

individuals using the procedure described earlier.
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which, despite its simplicity, help us match the two empirical facts just described: (i) income

follows a hump-shaped trajectory over age, and (ii) poor health reduces income.5 The coef-

ficients µ are estimated by ordinary least squares (OLS). Figure 1 shows health deficits and

incomes by age for individuals in good and bad health. To estimate the equation, we pool

the series for both groups and run OLS, yielding µ∗
0 = 2.76 [2.56, 2.96], µ∗

1 = 0.94 [0.81, 1.07],

and µ∗
2 = −20.7 [−23.1,−18.3]. The fit is satisfactory (R-squared ≈ 0.7), and as expected,

yt(t, d(t)) > 0 and yd(t, d(t)) < 0 (see subsection 3.1 for the underlying logic).

4.2.5. Hazard rate, λ(t, d(t)). Section 3 defined Λ(t) as the probability that an individual is

alive at time t. For an individual of age t, the probability of dying between age t and age

t+ dt is then given by

z(t) =
Λ(t)− Λ(t+ dt)

Λ(t)
.

Furthermore, this probability of death z(t) relates to the hazard rate λ(t) as

λ(t) =
−Λ̇(t)

Λ(t)
≈ −(Λ(t+ dt)− Λ(t))

dt Λ(t)
=

z(t)

dt
.

The 2022 HumanMortality Database (HMD) provides the probability of death for individuals

aged 0 to 110 in the coming year. This means it provides z(t) when dt represents one year,

which in the model corresponds to dt = 4.3
85

= 0.05, since t = 4.3 in the model represents a

period of 85 (i.e., 105 - 20 = 85 years). Therefore, we recover the hazard rate in the US in 2022

using the formula λ(t) = z(t)/0.05. The left panel in Figure 2 shows the results. As expected,

the hazard rate rises monotonically with age, rising slowly at first before accelerating around

60 years.

The hazard rate constructed here is unconditional; it does not account for an individual’s

health. However, as Cho et al. (2022) document, individuals reporting bad health face a

much higher risk of death compared to those reporting good health, and the difference in

risk by health status is significantly greater among younger individuals than older ones.

More precisely, the authors find that individuals aged 40 years reporting poor health have a

hazard rate roughly 10 times higher than those in excellent health, whereas it is roughly 5.5

times higher at age 60 and 2 times higher at age 80 (see blue dots in right panel of Figure

2).

We specify the functional form for λ(t, d(t)) as

λ(t, d(t)) = λ0 + λ1e
t + λ2d(t), (8)

which, although highly stylized, helps us match the two empirical facts just described: (i) the

hazard rate rises exponentially with age, and (ii) poor health raises the likelihood of death.

5See Low and Pistaferri (2015) and De Nardi et al. (2024) for similar assumptions about how health status

affects income.
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Figure 2. Mortality risk
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Notes. The left panel displays the unconditional hazard rate constructed from the 2022 HMD. The right

panel shows the ratio of the hazard rate for those in poor health to the hazard rate for those in excellent

health, approximated from the data in Cho et al. (2022).

We estimate the λ coefficients as follows. From the left panel of Figure 1, we retrieve the

unconditional health deficit at ages 20 and 80, denoted by du(20) and du(80). The figure also

reports the health deficits for individuals in good and bad health, classified as those reporting

excellent, very good, or good health and those reporting fair or poor health, respectively.

However, to align with Cho et al. (2022), we now focus on individuals reporting excellent

or poor health. Using our dataset, we retrieve their health deficits at age 80, denoted by

de(80) ≈ 0.1 and dp(80) ≈ 0.27. Lastly, from the left panel of Figure 2, we obtain the

unconditional hazard rate at ages 20 and 80, denoted by λu(20) and λu(80). The coefficients

λ are determined by solving the linear system of equations.

λ0 + λ1 + λ2du(20) = λu(20),

λ0 + λ1e
(80−20)×4.3/85 + λ2du(80) = λu(80),

λ0 + λ1e
(80−20)×4.3/85 + λ2dp(80) = 2

[
λ0 + λ1e

(80−20)×4.3/85 + λ2de(80)
]
.

The resulting parameter values are λ0 ≈ −0.08, λ1 ≈ 0.02 and λ2 ≈ 3.8. As expected,

λt(t, d(t)) > 0 and λd(t, d(t)) > 0 (see subsection 3.1 for the underlying logic). Furthermore,

the calibrated functional form implies that individuals aged 60 years reporting poor health

have a hazard rate approximately 4 times higher than those in excellent health, slightly

falling short of the 5.5 times higher documented by Cho et al. (2022).

4.3. Parameters calibrated within the model.

4.3.1. Monetary cost of health deficit, B. The left panel of Figure 3 uses data from the 2022

MEPS to construct the median total medical expenditures as a percentage of income by



21

Figure 3. Medical expenditures and distribution of age at death
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Notes. The left panel displays median total medical expenditures as a percentage of income by age, with

data sourced from the 2022 MEPS. The right panel shows the age-at-death distribution, with data from the

2022 HMD.

age. This ratio remains almost constant before rising around 60 years. For example, fitting

a quadratic time trend to extend the series until the age of 105 suggests that at that age,

medical expenditures represents 50% of income. This exponential increase is consistent with

De Nardi et al. (2016), who find, for example, that medical expenses more than double

between ages 70 and 90, and that average medical expenditures for an American aged 65 or

older are 2.6 times the national average.

In our setup, medical expenditures are divided between preventive care, h, and the monetary

cost of health deficit, Bd. Recall that the latter can be viewed as long-term care expenditures,

as well as curative or palliative care. Importantly, at the maximum admissible age, T̄ , there is

no incentive to spend on preventive care, as death is imminent, and all medical expenditures

are the monetary cost of health deficit.6 In addition, at that moment, the individual’s health

deficit is d̄ (see boundary conditions in subsection 3.1). Therefore, at time T̄ , the ratio

medical expenditures to income equals θBd̄
y(T̄ ,d̄)

= 0.5 (see above). Since we consider 105 years

as the maximum admissible age, we set

B = 0.5
y(T̄ , d̄)

θd̄
≈ 1.9.

4.3.2. Efficiency of preventive care, A. We calibrate the remaining parameter, A, using a

simple grid search, evaluating parameter values over a predefined range to ensure that the

6Our model’s implication that, at the end of life, most medical expenditures are not related to preventive

care is both intuitive and consistent with De Nardi et al. (2016), who argue that the majority of the increase

in medical expenditures between ages 70 and 90 is driven by nursing home spending.
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Figure 4. Grid search results
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key condition upon which most of our calibration rests holds (see subsection 4.2.1)

e−T̄ ≈ 0.95(105−20),

or equivalently T̄ = 4.36. Our grid search method then minimises the objective function

Q(A) = (T̄ (A)− 4.36)2.

The left panel in Figure 4 plots the objective function against A, showing a distinct U-shape.

The local minimum occurs at A = 0.0067, which we set as our baseline calibration for A.

Furthermore, the value of the loss function at the minimum is nearly zero.

4.4. Assessment. To evaluate the model’s performance on non-targeted criteria, we first

assess key statistics related to the age at death stationary distribution.7 These statistics in-

clude the first three moments of the age-at-death distribution and the probability of reaching

75 conditional on being alive at 50. We compute the skewness of the age-at-death distribu-

tion and the conditional probability using a 10,000-agent Monte Carlo simulation, while the

explicit formulas for the other statistics are provided in subsection 3.3. As shown in Table 4,

the model fits the age-at-death distribution well, with all statistics falling within a plausible

range.

Now, we assess the life-cycle dynamics of an individual reaching the maximum lifespan of

105 years. Figure 5 compares key model-implied paths with those observed in the data, as

described in previous subsections. Starting with the top-left panel, our model generates a

health deficit path that increases monotonically with age in a convex manner, consistent

with the data. In addition, the model implies a probability of survival at a given age,

7At each instant, a new cohort of size 1 is born, leading to a stationary population distribution (see

subsection 3.3).
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Table 4. Non-targeted moments: data and model

Data Model

Mean age at death 78 76

Dispersion age at death 17 19

Skewness age at death -1.5 -0.5

P (T > 75|T > 50) 0.7 0.6

Notes: In the model, we compute the skewness of age at death and the probability of reaching 75,

conditional on being alive at 50, using a 10,000-agent Monte Carlo simulation. In the data, both

measures come from the 2022 actuarial tables in the HMD.

Λ(t), that closely matches the data, although a larger share of agents (≈ 6%) reach the

maximum admissible age compared to the data (0.2%). This occurs because the model

underestimates mortality at very old ages, which also explains why the skewness of the

age-at-death distribution is not sufficiently negative (recall Table 4).

Turning to the bottom-left panel, income follows a hump-shaped pattern, similar to the data,

although it peaks later in the model. As explained earlier, these inverted-U dynamics arise

from two competing forces. On one hand, higher health deficits reduce income, capturing

more complex dynamics such as involuntary unemployment, limitations on the type of work

one can perform, or lower productivity. On the other hand, income increases with age, re-

flecting the general trend of rising earnings as individuals advance in their careers. Together,

these forces result in income dynamics that are reasonably close to the observed pattern.

The bottom-center panel plots the ratio of total medical expenditures to income by age.

While this ratio remains fairly constant in the data before rising around 60 years, the model

shows a decrease before surging around age 85. Three factors contribute to this behavior –

two affect the numerator, and one affects the denominator. First, preventive care decreases

with age (see the bottom-right panel). The reasoning is simple: the health deficit is a stock

variable that impacts the remainder of an individual’s life. Thus, a unit of preventive care

at time t provides benefits over the period [t, T ]. As t nears T , the time available to reap

these benefits shortens, reducing the incentive for preventive care. Second, as the health

deficit increases with age, so does its associated monetary cost (see the bottom-right panel).

Third, income follows the hump-shaped pattern mentioned earlier. Together, these factors

drive the dynamics of the share of income allocated to healthcare.

We can also use the figure to compare the share of income spent on medical care across the

entire population (denoted by H in subsection 3.3) in both the data and the model. Using

the trapezoid rule to compute the necessary integrals, we find that the ratio is 6.5% in the
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Figure 5. Non-targeted life-cycle paths: data and model

Notes. Refer to the corresponding subsection above for details on data sources. Since the time series for the

health deficit, income, and medical expenditures relative to income extend only to 80 years in the data, we

extrapolate them to 105 years using simple polynomial fits.

data and 9% in the model.8 All told, the model does a fair job at approximating individuals’

medical expenditures. Lastly, the top-right panel confirms that utility flows remain positive,

ruling out the preference-for-death scenario.

In sum, although stylized, the baseline model replicates key empirical patterns of mortality

and health well. This gives us confidence that it provides a plausible framework for intro-

ducing income and health heterogeneity to study the health-to-income and income-to-health

channels. We turn to this next.

5. Income and health heterogeneity in the baseline model

Let us now assess the model’s ability to capture the correlation between income and life

expectancy discussed in Section 2, focusing on two key channels: (i) the health-to-income

channel, where health affects income, and (ii) the income-to-health channel, where income

affects health. For simplicity, let us from now on denote by d̂0 and µ̂0 the initial health deficit

8The share of individuals’ income spent on medical care, 6.5%, obtained from the 2022 MEPS and the

2022 HMD, is significantly lower than the ratio of total health expenditures to GDP, 17.6%, reported in the

2023 National Health Expenditure Fact Sheet. While explaining this difference is beyond the scope of this

paper, a likely reason is that survey data focus on individuals’ direct expenditures on healthcare services,

whereas the share of GDP spent on healthcare includes broader expenditures, such as government spending

on public health, hospital funding, and other indirect costs.
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and the permanent income component in the baseline model without ex-ante heterogeneity

just described.

5.1. Income and life expectancy. In the baseline model, individuals differ only in their

time of death, not in health status or income. Hence, everyone aged t has the same life

expectancy, preventing the model from capturing the known correlation between income

and life expectancy. To address this, we introduce permanent, ex-ante heterogeneity that

generates cross-sectional variation in income, health, and life expectancy. We consider two

types of ex-ante heterogeneity: one related to health and another related to income. First,

individuals might differ in their initial health deficit, d0, reflecting variations in genetics and

early-life experiences. This aligns with recent research highlighting the lasting impact of

early-life factors on health and economic outcomes (see De Nardi et al., 2024, and references

therein). Formally, individual i draws d0 from a uniform distribution d0 ∼ U(d̂0−ϵd, d̂0+ϵd),

where parameter d̂0 is the initial health deficit in the baseline model, and ϵd ≥ 0 determines

the degree of cross-sectional variation. Second, individuals might differ in their permanent

income component, µ0, capturing variations in work ethic, productivity, or access to better

education and professional networks. Formally, individual i draws µ0 from a uniform distri-

bution µ0 ∼ U(µ̂0−ϵy, µ̂0+ϵy), where µ̂0 is the permanent income component in the baseline

model, and ϵy ≥ 0 (see Appendix A for the firm maximization program with heterogeneous

agents).9

5.1.1. Income heterogeneity. To isolate the impact of each channel, we introduce one source

of heterogeneity at a time. We begin by allowing individuals to differ in their permanent

income components while keeping their initial health deficits identical. The solid blue line

in the right panel of Figure 6 shows the resulting relationship between income and life

expectancy at age 50 in the stationary population distribution. Specifically, we run a Monte

Carlo simulation with 50,000 agents, where each individual draws µ0 ∼ U(2.8, 3.2) and

d0 = d̂0. We then identify all individuals alive at age 50, divide them into five income

groups, compute their life expectancy as the mean age at death within each group, and

plot the results. Since extending the bounds of the uniform distribution only increases the

length of the solid blue line, we choose to remain within the neighborhood of the baseline

calibration.

Income contributes to life expectancy inequality. Higher income enables greater investment

in preventive care, which reduces health deficits and, in turn, lowers mortality risk. An

indirect effect reinforces this relationship: lower health deficits reduce medical expenditures

9We choose the uniform distribution because solving our model involves a nonlinear boundary value

problem with an endogenous maximum admissible time, which is numerically challenging and does not

always yield a solution. This constraint forces us to stay close to the parameter space explored in the

baseline calibration.
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Bd and increase income, further enabling investment in preventive care. This creates a self-

reinforcing cycle. Previous structural studies that assume exogenous health overlook these

mechanisms (see Section 2). From a quantitative perspective, the blue line suggests that a

10% increase in income at age 50 corresponds to a rise in life expectancy of approximately

nine months. For comparison, Chetty et al. (2016) put the figure at around 6 months.10

At face value, this suggests that income heterogeneity alone could account for the observed

correlation between income and life expectancy. However, there is an important caveat.

In our model, income differences are permanent and known to individuals. Furthermore,

individuals perfectly understand the impact of their choices on their health and mortality

risk. By contrast, in Chetty et al. (2016), individuals at a given income percentile at age

t may have experienced unexpected income fluctuations earlier in life and could face them

in the future. Moreover, individuals often face cognitive limitations when making health-

related decisions. For instance, Keane and Thorp (2016) show that consumers, particularly

the elderly, struggle to make optimal choices regarding health insurance, healthcare, and

retirement planning. These difficulties often result in behaviors indicative of confusion,

such as selecting dominated insurance plans or failing to respond adequately to financial

incentives. Together, unexpected income fluctuations and cognitive limitations could help

explain why the link between income and mortality risk may appear stronger in our model

than in the data.

Remark. The income-to-health deficit described above rests on the idea that higher dispos-

able income enables greater investment in preventive care. This aligns with recent empirical

evidence. For example, Kurani et al. (2020) found that individuals living in the least de-

prived census block groups in Minnesota, Iowa, and Wisconsin were roughly twice as likely

to complete recommended screenings for breast cancer, cervical cancer, and colorectal cancer

compared to those in the most deprived census block groups. Bauer et al. (2022) document

comparable outcomes across the US, highlighting that counties with higher social vulnerabil-

ity had significantly lower odds of receiving the recommended cancer screenings. In addition,

French et al. (2019) report that lower-income households purchase less healthful foods than

10More precisely, Chetty et al. (2016) estimate that in 2014, the expected age at death for 40-year-old

American men in the second quartile of the income distribution (mean $47k) was approximately 81 years,

while for those in the third quartile (mean $83k), it was around 85 years. Assuming a linear relationship

between expected age at death and income in that segment of the income distribution – an assumption

supported by further results in the paper – an increase in income of 10% correlates with an increase in life

expectancy of about six months. Though our figure reports the correlation at age 50, the link between these

variables remains similar at age 40.
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higher-income households, even when adjusting for factors such as education, marital status,

and race.

Figure 6. Income and life expectancy
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Notes. The left panel plots the relationship between income and life expectancy at age 50 under different

sources of ex-ante heterogeneity. The results are based on a Monte Carlo simulation with 50,000 agents.

The right panel reports the first three moments of the resulting age-at-death distribution.

5.1.2. Health heterogeneity. We now shut down ex-ante income heterogeneity, but allow in-

dividuals to differ in their initial health deficits. Specifically, we proceed exactly as before,

but individuals now draw d0 ∼ U(0.018, 0.022) and µ0 = µ̂0. The dashed red line plots the

resulting link between income and life expectancy at 50. As in models by Capatina (2015),

De Nardi et al. (2024), and Hosseini et al. (2025), the dashed red line illustrates how health

contributes to income inequality. Three mechanisms drive this effect. First, our calibration

finds yd(t, d(t)) < 0, meaning individuals with higher initial health deficits tend to earn less

later in life. Second, higher health deficits lead to greater medical expenditures (captured

by Bd(t)), reducing resources available for preventive care. This accelerates health deficit

accumulation, further lowering income. Third, worse health lowers the effective discount

factor (see subsection 3.2), making individuals less patient – a pattern recently documented

by De Nardi et al. (2024). Less patient individuals invest less in preventive care, which

worsens health deficits and further suppresses income.

The dashed red line also illustrates how health contributes to life expectancy inequality:

individuals with high d0’s have a life expectancy roughly 4 years lower than those with low

d0’s (78.5 versus 82.5 years). Higher health deficits, both due to a higher initial value and

the accelerated accumulation described earlier, lead to higher hazard rates. This increased
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likelihood of death at each period reduces life expectancy. The strong link between health at

50 and life expectancy appears in the data as well. Using a sample of over 1,200 individuals

aged 50 to 54 from the 2022 HRS, we find a strong correlation between health and the

expected probability of living to age 75 or beyond. Individuals in excellent health report a

median expected probability of 80%, while those in poor health report a median expected

probability of 40%.

5.1.3. Both income and health heterogeneity. Overall, either source of ex-ante heterogene-

ity enables the model to generate a meaningful link between income and life expectancy,

suggesting the importance of both the health-to-income and the income-to-health channels.

This aligns with Deaton (2016), who argues that while there is almost certainly some causal

relationship between income and mortality, poor health also threatens income, creating a

reverse causality from health to income throughout the life course.

Not surprisingly, combining both sources of ex-ante heterogeneity (dashed yellow line in the

figure) results in a link between income and life expectancy that falls in the middle of the

range established by considering each source individually. In other words, the dashed yellow

line is broadly the sum of the two vectors that determine the solid blue and dotted red lines.

Turning briefly to the right panel in Figure 6, the table shows that even with meaningful

ex-ante heterogeneity, the model still matches the age at death distribution fairly well. This

is due to the uniform initial distributions for d0 and µ0 in the neighborhood of the baseline

calibration.

5.2. Income-to-health and health-to-income channels over the life-cycle. As dis-

cussed in Section 2, some studies argue that the casual links between health and income may

change with age (Smith, 1998; Cutler et al., 2011). More precisely, income might have the

greatest impact in childhood when health levels and trajectories are set, while in adulthood,

health might play a larger role in shaping income.

Our model supports this hypothesis. Consider the first part of the conjecture: the income-

to-health channel is strongest early in life. In our framework, higher income improves health

by increasing investment in preventive care. Put differently, if preventive care use were

unrelated to income, income would have no effect on health. The left panel of Figure 7

shows how preventive care changes with age for a wealthy individual (µ0 = 3.2) and a poor

individual (µ0 = 2.8). The gap is widest early in life, as greater early-life investment sets

wealthy individuals on a more favorable health trajectory. Over time, this gap narrows,

collapsing near the end of life when additional preventive care provides little benefit (see

Subsection 4.4).

Now consider the second part of the conjecture: the health-to-income channel is strongest

in adulthood. Subsection 5.1 outlined the three mechanisms through which initial health
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Figure 7. Intensity of income-to-health and health-to-income channels
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individual (d0 = 0.018) and an unhealthy individual (d0 = 0.022) .

deficits lead to meaningful income differences later in life. The right panel of Figure 7

illustrates this by showing how income evolves with age for a healthy individual (d0 = 0.018)

and an unhealthy individual (d0 = 0.022). Early in life, the income gap is small because

initial health deficits are similar. Over time, it widens as healthier individuals accumulate

deficits more slowly, reducing their discount rate and medical expenses Bd, while enabling

greater preventive care use. This feedback loop amplifies income differences later in life,

favoring those with better initial health.

In sum, the model confirms that the strength of both channels varies with age. This finding

highlights the need to account for both factors when assessing the idea that subsidy and

redistribution policies could be effective tools of public health. We turn to this next.

6. Preventive subsidies and redistribution policies

Developed countries subsidize preventive care and implement redistributive policies, though

the extent and approach vary. In the U.S., preventive care is subsidized through public pro-

grams and insurance regulations, including Medicare, Medicaid, the Affordable Care Act,

and tax benefits for employer-based insurance. In turn, the U.S. tax system is progressive,

and programs like the Earned Income Tax Credit and food assistance provide additional

redistribution. In this section, we explore how health subsidies and redistribution policies

shape the relationship between income and mortality risk. In what follows, we keep both

sources of heterogeneity, d0 and µ0, active.
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6.1. Government policies and budget constraint. The government reimburses a share

sh of investment in preventive care and provides lump-sum transfers ω. To balance its

budget, it finances these expenditures through a proportional earnings tax τ . These three

instruments apply uniformly to all individuals, regardless of age, income, or health. As a

result, individuals’ budget constraints (3) now become

c(t) + θ [(1− sh)h(t) +Bd(t)] = (1− τ)y(t, d(t)) + ω. (9)

From this point on, we refer to y(t, d(t)) as earnings, and to (1− τ)y(t, d(t))+ω as total net

income or disposable income. Up to now, we have used these terms interchangeably, since

they were identical in the absence of government intervention. This equivalence no longer

holds once policy is introduced.

Any government action redistributes resources both within and across cohorts. Across co-

horts, redistribution occurs because earnings follow a hump-shaped pattern – rising early in

life, peaking in middle age, and declining with age. As a result, a proportional income tax

shifts resources from middle-aged individuals to both younger and older individuals. Within

cohorts, redistribution occurs as wealthier individuals contribute more to government rev-

enues, supporting lower-income individuals through transfers and subsidies. To compute the

government budget constraint, we aggregate over all individuals. Each individual is charac-

terized by age t, initial health deficit d0, and initial permanent income component µ0. Any

individual variable x ∈ {c, h, d, y, λΛ} can then be expressed as x(t, d0, µ0) and aggregated

as

X =

∫ µ̂0+ϵy

µ̂0−ϵy

∫ d̂0+ϵd

d̂0−ϵd

∫ T̄ (d0,µ0)

0

x(t, d0, µ0)Λ(t, d0, µ0) dt︸ ︷︷ ︸
Age dimension

U[d̂0±ϵd] dd0

︸ ︷︷ ︸
Health dimension

U[µ̂±ϵy ] dµ0

︸ ︷︷ ︸
Income dimension

. (10)

Here, U[d̂0±ϵd] and U[µ̂±ϵy ] are the uniform distributions governing d0 and µ0, while T̄ (d0, µ0)

is the maximum admissible age of an individual characterized by d0 and µ0. Aggregating

the linear equation equation (9) yields the government budget constraint

shθH + ωP = τY, (11)

where P is the size of the population, obtained from equation (10) with 1, the size of

each newborn generation, instead of x(t, d0, µ0). Therefore, the left-hand side represents

government expenditures and the right-hand side represents total revenues. Given any pair

{sh, ω}, the government chooses τ to ensure that equation (11) is satisfied.

6.2. Income and life expectancy with government intervention. Our model predicts

a positive link between income and life expectancy. Now, we examine how government

intervention through subsidies, sh, or transfers, ω, shapes this relationship. Our goal is not to
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rank these policies but to understand their qualitative effects on the income-health gradient.

For simplicity, we will calibrate each instrument to a round figure, though the underlying logic

applies more broadly to any calibration. As a result, the degree of government intervention

will vary across instruments, which is not a concern for our positive analysis.

To isolate the impact of each policy, we introduce them one at a time. We start with a

10% preventive care subsidy (sh = 0.1) and no lump-sum transfers (ω = 0). To balance

the government budget constraint, equation (11) implies a 0.7% income tax. The dotted

red line in the left panel of Figure 8 shows the resulting relationship between before tax

earnings, y(t, d(t)), and life expectancy at age 50 in the stationary population distribution.

As a benchmark, the solid blue line shows the no-policy scenario discussed in Subsection 5.1.

The effect of government intervention on total net income, (1− τ)y(t, d(t)) + ω, is discussed

at the end of this subsection.

Comparing the solid blue and dotted red lines highlights three effects. First, health subsidies

raise life expectancy at age 50 across all income levels, shifting the curve upward. By lowering

the cost of preventive care, subsidies make it more attractive, leading individuals to allocate

a larger share of income to it. This, in turn, reduces mortality risk through the mechanisms

outlined in Subsection 5.1. In the right panel of Figure 8, this upward shift corresponds to

an increase of 12 months in the mean age at death. Second, health subsidies raise earnings

at age 50 for all individuals, shifting the curve rightward. As discussed earlier, greater

preventive care slows the accumulation of health deficits, allowing individuals to enjoy higher

earnings. Third, health subsidies widen the life expectancy gap between rich and poor by

steepening the curve. While all individuals increase their preventive care investment by a

similar proportion – about 20% in this case (see right panel) – the absolute increase is larger

for wealthier individuals. As a result, their health deteriorates more slowly, extending their

life expectancy more than that of lower-income individuals. This explains why the dispersion

of age at death increases by about 4 months.11

We now consider lump-sum transfers ω = 1.7 and no preventive care subsidy (sh = 0.0).

To balance the government budget constraint, equation (11) implies a 50% income tax.12

11A 10% price reduction leading to a 20% increase in consumption suggests that preventive care is a

superior good. Indeed, in our model wealthier individuals allocate a larger share of their income to it than

those with lower incomes. Hall and Jones (2007) finds a similar pattern, as health investment in their

framework, like in ours, extends lifespan and improves quality of life.
12ω = 1.7 implies that the absolute change in the mean age at death matches that of the subsidy scenario

with sh = 0.1, as shown in the right panel of Figure 8.
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Figure 8. Income and life expectancy with government intervention
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at age 50 under government actions, based on a Monte Carlo simulation with 50,000 agents. The right
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investment. In the latter case, values are normalized to 1 under the no-policy scenario, with reported numbers

under the health subsidy and lump-sum transfer indicating the relative change from this benchmark. Poor

and unhealthy refer to an individual with µ0 = 2.8 and d0 = 0.022; rich and healthy refer to an individual

with µ0 = 3.2 and d0 = 0.018.

The dashed yellow line in the left panel of Figure 8 shows the resulting relationship between

before tax earnings and life expectancy at age 50 in the stationary population distribution.

Comparing the solid blue and dashed yellow lines highlights three effects. First, lump-

sum transfers reduce life expectancy at age 50 across all income levels, shifting the curve

downward. By weakening the link between health deficits and earnings (an income tax

of 100% would eliminate them completely), these transfers lower the incentive to invest

in preventive care, leading to higher mortality risk. In the right panel of Figure 8, this

downward shift corresponds to a decrease of 12 months in the mean age at death. Second,

lump-sum transfers reduce earnings, y(t, d(t)), at age 50 for all individuals, shifting the curve

leftward. As noted earlier, reduced preventive care accelerates health deficit accumulation,

which in turn lowers earnings across the entire population. Third, lump-sum transfers narrow

the life expectancy gap between the rich and the poor, flattening the curve. Wealthier

individuals experience a larger decline in preventive care use, both in relative and absolute

terms, compared to poorer individuals. This is due to their reduced incentives to invest

in preventive care and the decrease in disposable income due to income redistribution. In

contrast, the impact on preventive care investment for poorer individuals is influenced by

two opposing factors: the reduced incentives to invest in preventive care and the increased

disposable income resulting from lump-sum transfers. As a result, their preventive care
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Figure 9. Total net income dispersion as a function of age

Notes. Median total net income, (1 − τ)y(t, d(t)) + ω, with shaded areas representing the 25th and 75th

percentiles. Results from a 180,000-agent Monte Carlo simulation.

investment declines less than that of wealthier individuals (see right panel), leading to a

smaller decrease in life expectancy. This explains why the dispersion of age at death falls by

about 4 months.

In sum, the two policies have opposite effects on the income-health link, and hence, on the

age at death distribution. The key difference lies in how they shape incentives for preventive

care. Health subsidies encourage greater preventive care by reducing its relative cost, while

income redistribution discourages it by weakening the link between earnings and health

deficits.

These findings do not imply that income redistribution is inherently flawed. Figure 9 shows

median total net income, (1− τ)y(t, d(t)) + ω, with shaded areas representing the 25th and

75th percentiles. Compared to the no-policy and health subsidy scenarios, lump-sum trans-

fers significantly reduce income inequality by narrowing the gap between these percentiles.

This effect is especially pronounced among the elderly, where the lowest-income individuals

receive substantially higher incomes than in the other two scenarios. Moreover, lump-sum

transfers weaken the link between total net income and age, reducing inequality across co-

horts. As a result, redistribution increases consumption for those with the highest marginal

utility of consumption. A utilitarian central planner might accept shorter life expectancy

and lower earnings in exchange for higher per-period utility for lower-income individuals.

Evaluating this trade-off quantitatively is beyond the scope of this paper.
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7. Extensions to the baseline model

We now extend the baseline model. In subsection 7.1, we introduce a risk-free asset,

allowing agents to transfer resources safely over time. In subsection 7.2, we incorporate

retirement, with individuals receiving a pension financed by a pay-as-you-go system. For

simplicity, this section assumes no government intervention in the form of health subsidies

or lump-sum transfers, setting sh = ω = 0. Appendix B relaxes this assumption and shows

that our main conclusions about government intervention remain as in the baseline model.

7.1. Risk-free asset. Our baseline model abstracts from savings tools for mathematical

tractability. This might not be as strong an assumption as it first appears: many households

hold little wealth. For instance, Aguiar et al. (2024) find that 40% of US households live hand-

to-mouth, and this behaviour persist over time: hand-to-mouth households often remain so

for years. Nonetheless, we now relax the no-savings assumption, introducing a risk-free asset

that allow agents transfer resources safely over time. We consider a small open economy

where foreign agents meet domestic savings demand at a fixed interest rate r.

Denote by s(t) an agent’s asset holdings at age t. Assuming no assets at birth, s(t) follows

ṡ(t) = i(t) , (12)

s(0) = 0 . (13)

Here i(t) is positive if the individual saves and negative if she borrows. The budget con-

straint (3) becomes

c(t) + i(t) + θ(h(t) +Bd(t)) = y(t, d(t)) + rs(t) + z(t) .

Due to the uncertainty surrounding the agent’s age at death, she might pass away with

positive asset holdings (s(T ) > 0) or debts (s(T ) < 0). To tackle this issue, we introduce an

annuity market as in Yaari (1965) or Blanchard (1985). More precisely, an insurance firm

pays z(s(t)) to the individual at each instant. In return, the firm collects all assets when the

individual dies. The running profit of this insurance firm is then

π(t) = λ(d(t))s(t)− z(t) .

Free entry in the insurance market ensures zero profits, and hence, z(t) = λ(d(t))s(t). The

individual’s budget constraint becomes

c(t) + i(t) + θ(h(t) +Bd(t)) = y(t, d(t)) + (r + λ(d(t))) s(t) . (14)

Lastly, if the agent reaches the maximum lifespan, her assets must be zero, s(T̄ ) = 0. This

holds because we abstract from warm-glow preferences, where agents derive utility from the

warm glow of their bequests to newborns. For brevity, we do not derive the optimality
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conditions for the extended model, as they result from the same methodology used in the

baseline case.

To explore how access to a risk-free asset shapes the link between income and mortality, we

retain the calibration of the baseline model (see Table 2), and set the risk-free rate equal to

the discount rate, r = ρ, as common in most macroeconomic models. As a result, individuals

will choose a perfectly flat consumption path. To illustrate, Figure 10 tracks the life-cycle

dynamics of the median individual reaching the maximum lifespan T̄ . For comparison, blue

lines represent the baseline model without saving tools studied so far.

As expected, the risk-free asset generates constant utility flows, for individuals find it optimal

to smooth consumption. More importantly, individuals borrow during their youth against

future earnings to increase initial consumption and fund higher preventive care, reflected in

increased medical expenditures early in life. Higher preventive care improves the individ-

ual’s health trajectory, leading to higher future earnings, lower medical costs, and reduced

mortality risk. Indeed, while the solid blue and dotted red lines appear to overlap in the

top middle panel displaying the probability of being alive at every age, the dotted red line

is slightly above, resulting in an increase in life expectancy at birth of almost one year. In

the bottom right panel, asset holdings decrease during youth and late life. This is due to

time-varying incentives to invest in preventive care and because these stages correspond to

the lowest income periods, as earnings follow a hump-shaped pattern.

These life-cycle paths suggest that access to a risk-free asset has similar effects on the income-

mortality link as the preventive care subsidy studied in Subsection 6.2. Both mechanisms

transfer resources from the old to the young – savings through borrowing against future

earnings and the subsidy through taxation – to support higher preventive care early in life.

To see this point more clearly, the left panel of Figure 11 shows the relationship between

earnings and life expectancy at age 50 in the stationary population when both sources of

ex-ante heterogeneity, d0 and µ0, are active. The solid blue line represents the baseline model

without policy intervention, while the dotted red line represents the no-policy scenario with

access to a risk-free asset. Access to a risk-free asset increases life expectancy at all earning

levels (upward shift) and raises them (rightward shift), while also widening the life expectancy

gap between rich and poor (steeper slope). These effects mirror those of the preventive care

subsidy, sh, funded through a constant earnings tax, τ , in Figure 8. The steeper slope

arises because rich, healthy individuals can leverage their higher expected future earnings

and borrow more during youth than their poor, unhealthy counterparts. As a result, they

invest much more in preventive care early in life. For instance, an individual with the best

(worst) possible health and highest (lowest) earnings increases preventive care at age 20 by

80% (60%) compared to the baseline model without savings.
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Figure 10. Life-cycle paths of the median individual: baseline model and

risk-free asset extension
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Notes. Solid blue lines represent the baseline model without saving tools. Dotted red lines represent the

risk-free asset extension. Both models retain the baseline calibration presented in Table 2, with the risk-free

extension further setting r = ρ.

The right panel of the figure further illustrates how the risk-free asset increases life ex-

pectancy. It also shows that mean disposable income in this extension is lower than in the

baseline model. With access to a risk-free asset, individuals hold negative asset positions for

most of their lives, making the economy a net borrower (see Figure 10). As a result, interest

payments to foreign lenders exceed income received from abroad, reducing overall disposable

income. Lastly, Appendix B shows that access to a risk-free asset does not alter our main

conclusions about government intervention.

7.2. Pay-As-You-Go (PAYG) pension scheme. In the baseline model, individuals sup-

ply one unit of labor inelastically at each instant t ∈ [0, T ] and receive a real wage equal

to their labor productivity, y(t, d(t)). In reality, however, most individuals retire before the

end of their lives. To capture this, we now assume that individuals supply one unit of labor

inelastically until age t̂ and none afterward. Labor earnings until age t̂ is y(t, d(t)), as speci-

fied by equation (7). Once retired, individuals receive a pension k > 0, which, for simplicity,
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Figure 11. Income and life expectancy: baseline model and risk-free asset

extension
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Risk-free asset 76.9 19.6 3.04 0.37

Notes. The left panel plots the relationship between income and life expectancy at age 50 in the baseline

model and the risk-free extension under no government intervention. The results are based on a Monte Carlo

simulation with 100,000 agents. The right panel reports the first two moments of the resulting total net

income and age-at-death distributions.

is independent of past labor earnings. Total pre-tax income then evolves by

yT (t, d(t)) =

y(t, d(t)), if t < t̂

k, if t ≥ t̂.

Letting t̂ → ∞ restores the baseline model.13 Assuming no health subsidies and no lump-sum

transfers, the government budget constraint is

kP>t̂ = τY<t̂, (15)

where P>t̂ denotes the population above age t̂, and Y<t̂ represents the total labor earnings

of individuals below that age (see Appendix A for analytical expressions). This formulation

corresponds to a PAYG pension system, in which current workers’ contributions finance the

benefits received by current retirees.

To examine how a PAYG pension scheme affects the relationship between income and mor-

tality, we keep the baseline model calibration (see Table 2) and abstract from the risk-free

asset described in the previous subsection. Since the effective retirement age in the US is

13This labor earnings profile introduces a discontinuity at age t̂, which is not compatible with our optimal

control framework, as it requires differentiability everywhere. To address this, we approximate this step

function using a logistic function with a high steepness parameter. This ensures smooth transitions while

closely mimicking the intended time profile. Visually, the logistic approximation is almost indistinguishable

from the original step function, preserving the intended economic effects without introducing mathematical

inconsistencies.
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around 65, we set t̂ = (65 − 20) × 4.3/85. In addition, we set k = 1.7, which requires a

labor earnings tax rate of 17% to balance the government’s budget. The implied pension

replacement rate, defined as k
(1−τ)y(t̂,d(t̂))

, is 55% for the median agent. This aligns with the

empirical evidence documenting a net pension replacement rate in the US in 2022 slightly

above 50%.14

Figure 12. Income and life expectancy: baseline model and pension scheme
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Baseline 76.0 19.5 3.43 0.52

Pension scheme 73.8 18.7 2.48 0.52

Notes. The left panel plots the relationship between income and life expectancy at age 50 in the baseline

model and the pension scheme extension under no government intervention. The results are based on a

Monte Carlo simulation with 100,000 agents. The right panel reports the first two moments of the resulting

total net income and age-at-death distributions.

The left panel of Figure 12 shows the relationship between earnings and life expectancy at age

50 in the stationary population when both sources of ex-ante heterogeneity, d0 and µ0, are

active. The solid blue line represents the baseline model, while the dotted red line represents

the extension with the pension scheme. Clearly, the PAYG scheme has very similar effects

on the income-mortality link as the lump-sum transfers discussed in Subsection 6.2. Both

mechanisms weaken the link between health and earnings later in life – the pension scheme

by enabling retirement and the lump-sum transfers through taxation. This weaker link

discourages preventive care during youth, raising mortality risk and lowering labor earnings

at age 50. Lastly, Appendix B confirms that, in the PAYG extension, lump-sum transfers and

health subsidies shape the income and age distributions in the same way as in the baseline

model.

14Organisation for Economic Co-operation and Development, OECD Data Archive, Net Pension Replace-

ment Rates.
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8. Concluding remarks

Our model shows that investing in preventive care during youth brings long-term benefits

for income as well as life expectancy. For example, higher initial income, health subsidies,

and access to a risk-free asset in youth all raise life expectancy. Our model also shows that

poor health increases economic inequality by decreasing disposable income, especially in later

years. Therefore, authorities wishing to limit the extent of inequality may choose to provide

income protection in later life, through policies such as income redistribution or the PAYG

pension system discussed earlier.

Our paper highlights two areas for future research. First, our model abstracts from morbidity

risk – the possibility of developing a severe condition that does not affect life expectancy but

raises medical costs and reduces labor productivity. We could address this by introducing a

specific hazard rate for such health conditions, allowing it to depend on both current age and

the current health deficit. Adding morbidity risk would create a role for health insurance

markets, offering a richer setting to explore the income-health gradient and the possible role

of government intervention. Second, our model assumes that agents inelastically supply one

unit of labor. Another possible extension would treat labor supply as an endogenous choice,

opening new channels through which government policy affects macroeconomic outcomes.

For instance, policies that raise life expectancy, such as a health subsidy, could increase

labor supply among older individuals by extending their planning horizon. This would also

generate general equilibrium effects: shifts in labor supply would affect government revenues

and, in turn, the tax rate required to balance the budget.
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Appendix A. Representative firm

A.1. Baseline model. We have a distribution of individuals differing in

• age t,

• initial health deficit d0 ∼ U(d̂0 − ϵd, d̂0 + ϵd),

• permanent component of productivity µ0 ∼ U(µ̂0 − ϵy, µ̂0 + ϵy).

Note that when ϵd = ϵy = 0, we obtain the representative median agent model presented in

Section 3. When ϵd > 0 and ϵy > 0, we have the heterogeneous agent model presented in

Section 5. Each individual is therefore characterized by (t, d0, µ0). We assume it supplies

one unit of labor, and has a specific labor productivity given by y(t, d(t, d0, µ0)).

For each type of individual (t, d0, µ0), a representative firm demands ld(t, d0, µ0) units of

labor and pays a unit wage of w(t, d0, µ0). We assume that the firm runs a constant return

to scale technology with labor as only input. Moreover, the firm can perfectly substitute

between each type of labor. Therefore, the firm solves the following maximization program

max
ld(t,d0,µ0)

{∫ µ̂0+ϵy
µ̂0−ϵy

∫ d̂0+ϵd
d̂0−ϵd

∫ T̄ (d0,µ0)

0
y(t, d(t, d0, µ0)) l

d(t, d0, µ0) dt
1

2 ϵd
dd0

1
2 ϵy

dµ0

−
∫ µ̂0+ϵy
µ̂0−ϵy

∫ d̂0+ϵd
d̂0−ϵd

∫ T̄ (d0,µ0)

0
w(t, d0, µ0) l

d(t, d0, µ0) dt
1

2 ϵd
dd0

1
2 ϵy

dµ0

}
,

where T̄ (d0, µ0) is the maximum admissible age for an individual equipped with d0 and µ0.

It is implicitly given by d(T̄ , d0, µ0) = d̄. The solution to the maximization problem is

w(t, d0, µ0) = y(t, d(t, d0, µ0)) and the profit of the firm is nil.

Equilibrium on the competitive labor market requires that for each type (t, d0, µ0) of indi-

viduals, labor demand is equal to labor supply

ld(t, d0, µ0) = 1× Λ(t, d0, µ0) .

The right-hand side accounts that each individual supplies one unit of labor and that there

is a mass Λ(t, d0, µ0) of individuals of type (t, d0, µ0), which is given by

Λ(t, d0, µ0) = e−
∫ t
0 λ(u,d(u,d0,µ0))du ,

where λ(t, d(t, d0, µ0)) is the hazard rate, as defined in equation (8). Finally, total production

is

Y =

∫ µ̂0+ϵy

µ̂0−ϵy

∫ d̂0+ϵd

d̂0−ϵd

∫ T̄ (d0,µ0)

0

y(t, d(t, d0, µ0)) Λ(t, d0, µ0) dt
1

2 ϵd
dd0

1

2 ϵy
dµ0 .

A.2. Model with PAYG pensions. We now consider the extension with PAYG pensions

as presented in subsection 7.2. The mandatory retirement age is t̂ and we assume that

T̄ (d0, µ0) ≥ t̂ for all (d0, µ0). This means that at least one individual of each type survives
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until the retirement age. Following exactly the same approach as above, total production

(or equivalently the wage bill) is

Y<t̂ =

∫ µ̂0+ϵy

µ̂0−ϵy

∫ d̂0+ϵd

d̂0−ϵd

∫ t̂

0

y(t, d(t, d0, µ0)) Λ(t, d0, µ0) dt
1

2 ϵd
dd0

1

2 ϵy
dµ0 .

Similarly, the mass of retirees is

P>t̂ =

∫ µ̂0+ϵy

µ̂0−ϵy

∫ d̂0+ϵd

d̂0−ϵd

∫ T̄ (d0,µ0)

t̂

Λ(t, d0, µ0) dt
1

2 ϵd
dd0

1

2 ϵy
dµ0 .

Appendix B. Government intervention

This appendix shows that allowing access to a risk-free asset or introducing a PAYG

pension scheme does not alter our main insights on government intervention.

B.1. Risk-free asset. We analyze the same two policies as before: a 10% health subsidy

and lump-sum transfers of ω = 1.7, both financed by an earnings tax that balances the

government budget. Table 5 presents the first two moments of the total net income and

age-at-death distributions. In the risk-free asset extension, total net income includes an

additional term, (r + λ(d(t)))s(t), which is absent in the baseline model, where net income

is given by (1− τ(t))y(t, d(t)) + ω(t). Despite this, government action has similar effects in

both setups. The health subsidy increases both moments of the age-at-death distribution

compared to the no-policy scenario while having little impact on the total net income dis-

tribution. Lump-sum transfers, on the other hand, lower both moments of the age-at-death

distribution and halve income inequality.

The only notable difference is that in the baseline model, lump-sum transfers reduce mean

disposable income compared to the no-policy scenario, whereas in the risk-free asset exten-

sion, they increase it. As explained in the main text, mean disposable income in the risk-free

asset extension is lower than in the baseline model. Indeed, individuals maintain negative

asset positions for most of their lives, making the economy a net borrower (see Figure 10).

As a result, interest payments to foreign lenders exceed the income received from them,

reducing overall disposable income. Lump-sum transfers discourage preventive care, leading

individuals to borrow less for health investments. This, in turn, lowers interest payments

to foreign lenders, mitigating the overall negative impact of borrowing. Consequently, mean

disposable income rises with lump-sum transfers compared to the no-policy scenario in the

risk-free asset extension.

B.2. PAYGO pension scheme. In this extension, we set lump-sum transfers to ω = 0.8,

rather than ω = 1.7 as in the baseline model. This is because the government is already

financing pensions for the elderly. Setting ω = 1.7 would result in very wealthy elderly

individuals and an excessively high labor income tax rate. Therefore, we set ω = 0.8, which,
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Table 5. Income and life expectancy under government intervention

Age at death Total net income

Mean Dispersion Mean Dispersion

Baseline

No policy 76.0 19.5 3.43 0.52

Health subsidy 77.0 19.8 3.48 0.55

Lump-sum transfer 75.0 19.2 3.33 0.24

Risk-free asset

No policy 76.9 19.6 3.04 0.37

Health subsidy 78.1 19.8 3.00 0.36

Lump-sum transfer 75.3 19.1 3.20 0.20

Pension scheme

No policy 73.8 18.7 2.48 0.52

Health subsidy 74.3 19.9 2.47 0.52

Lump-sum transfer 73.2 18.6 2.47 0.17

together with the pension scheme, requires a labor earnings tax rate of 50% to balance the

government budget. This is the same tax rate needed to balance the government budget in

the baseline model with lump-sum transfers (see Subsection 6.2). As for health subsidies, we

consider the same 10% rate. Table 5 confirms that lump-sum transfers and health subsidies

continue to shape the income and age distributions in the same way as in the baseline model.
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