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Abstract. Hamilton (2018) argues that one should never use the Hodrick-Prescott (HP)

filter, given its drawbacks and the existence of a better alternative. This comment shows that

the main drawback Hamilton finds in the HP filter, the presence of filter-induced dynamics

in the estimate of the cyclical component, is also a key feature of the alternative filter

proposed by Hamilton. As with the HP filter, the Hamilton filter applied to a random walk

extracts a cyclical component that is highly predictable, that can predict other variables,

and whose properties reflect as much the filter as the underlying data-generating process. In

addition, the Hamilton trend lags the data by construction and there is some arbitrariness

in the choice of a key parameter defining the filter. Therefore, a more balanced assessment

is that the HP and Hamilton filters provide different ways to look at the data, with neither

being clearly superior from a practical perspective.
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Résumé Non Technique

Les principales variables macro-économiques, telles que le produit intérieur brut (PIB) ou

le taux de chômage, sont souvent décomposées en séparant leur tendance de long terme d’une

composante cyclique. Que l’objectif soit d’estimer une composante cyclique d’un intérêt

particulier (par exemple l’écart de production, ou output gap) ou de comparer les propriétés

cycliques d’un modèle économique à celles des données, la difficulté reste la même : il existe

une infinité de décompositions possibles et il appartient au chercheur de sélectionner la plus

adaptée.

En 1981, Hodrick et Prescott ont proposé une méthode de décomposition, connue depuis

sous le nom de filtre HP, qui est largement employée dans la littérature académique, dans

les banques centrales et dans l’industrie financière. Néanmoins, cette méthode est sujette

à d’importantes limitations qui compliquent son emploi. En particulier, le filtre HP peut

déformer les propriétés de la composante cyclique et souffre d’un biais en fin d’échantillon, ce

qui ajoute à l’incertitude des analyses en temps réel. Finalement, la décomposition calculée

par le filtre HP dépend d’un paramètre dont la valeur doit être fixée a priori, de manière

assez arbitraire.

Dans une contribution récente, Hamilton (2018) énumère ces limitations pour arriver à

la conclusion que les économistes ne devraient jamais utiliser le filtre HP. En complément

des critiques précédentes, Hamilton propose une nouvelle technique pour décomposer une

série temporelle en tendance et cycle. Ce filtre de Hamilton constituerait une alternative

supérieure au filtre HP en résolvant tous les problèmes de ce dernier.

Le présent travail montre que le filtre de Hamilton n’apporte qu’une amélioration très

limitée par rapport au filtre HP. En se basant à la fois sur un exemple empirique étudié

par Hamilton lui-même et sur une discussion analytique, il est démontré que la composante

cyclique extraite par le filtre de Hamilton présente des caractéristiques statistiques voisines

de celles du cycle obtenu par le filtre HP. Ceci suggère que le filtre de Hamilton ne permet

pas de résoudre le problème de déformation de la composante cyclique. De plus, la tendance

estimée par le filtre de Hamilton présente un décalage mécanique de plusieurs observations

par rapport aux données. Enfin, les résultats du filtre de Hamilton dépendent eux aussi

crucialement d’un paramètre dont la valeur est choisie de manière arbitraire. En conséquence,

le filtre de Hamilton devrait être considéré comme un outil complémentaire au filtre HP,

plutôt que comme une alternative clairement supérieure.
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1. Introduction

In an important paper, Hamilton (2018) argues that one should never use the HP filter,

proposed by Hodrick and Prescott (1981, 1997) to decompose a time series into separate

trend and cyclical components. Hamilton makes his point in two steps. First, he highlights

three drawbacks of the HP filter: (a) It introduces spurious dynamic relations that have no

basis in the underlying data-generating process (DGP). (b) The cyclical estimates at the

boundaries of the sample are not reliable. (c) Common choices for the smoothing parameter

are arbitrary.1 Second, he proposes an alternative regression-based strategy, since known as

the Hamilton filter, that, he argues, extracts plausible cyclical components while eschewing

the pitfalls of the HP filter. Hamilton’s dismissal of the HP filter runs counter to widespread

practice in academia, policy-making institutions, and the private sector.

Given the attention received by Hamilton’s paper (more than 1,100 citations on Google

Scholar as of May 2022), it seems important to fully understand how his alternative filter

works and how it compares to the HP filter. This comment focuses on filter-induced dynam-

ics in the estimated cycles, showing that the Hamilton filter suffers from a similar drawback

as the HP filter. The issue is especially clear for the detrending of random walks, which

happens to be Hamilton’s focus. In this case, one can show analytically that the Hamilton

cycle exhibits strong serial correlation, is highly predictable from its past, and can predict

other variables. The same empirical example Hamilton uses to dismiss the HP filter, the fil-

tering of consumption and stock prices, confirms the existence of such dynamics: strikingly,

the Hamilton filter extracts cyclical components whose persistence and comovements mirror

those found in HP cycles. The analytical discussion confirms that these properties originate

from the filter: persistence follows mechanically from Hamilton defining the cyclical compo-

nent as a multi-step-ahead forecast error in a linear regression, a variable almost necessarily

autocorrelated. Therefore, focusing on a backward-looking filter like the Hamilton regression

is not enough to avoid creating seemingly spurious persistence and predictability patterns

in the estimated cyclical component. Furthermore, the trend estimated by the Hamilton

approach lags the data by construction.

The analytical discussion also shows how the choice of the forecast horizon h in the Hamil-

ton regression shapes the properties of the estimated cycles. With larger values of h, the

Hamilton filter extracts more volatile and more persistent cyclical components from the same

DGP. Yet, there is no clear criterion to pick up the forecast horizon. Hamilton (2018) sug-

gests using h = 8 for quarterly data, on the grounds that a two-year horizon should be the

benchmark for business-cycle analysis and that a multiple of 4 helps dealing with seasonal

patterns. But there is some arbitrariness in this choice. For instance, one could invoke

Angeletos, Collard, and Dellas’ (2020) finding that a shock dominating at business-cycle

1These limitations of the HP filter have been known for some time in the literature; see, e.g., Nelson and

Plosser (1982), Harvey and Jaeger (1993), and Cogley and Nason (1995).
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frequencies (6–32 quarters) has a footprint in the time domain that peaks within a year to

motivate using h = 4 instead. For macroeconomic time series behaving like random walks,

this change would roughly halve the volatility and the persistence of estimated Hamilton

cycles.

Overall, these results make it difficult to argue that the Hamilton filter will systematically

outperform the HP filter in macroeconomic applications. On the one hand, the Hamilton

filter improves on the HP filter by yielding consistent estimates at the boundaries of the

sample, even though the empirical results reported in Hall and Thomson (2021) suggest

that the gain can be marginal in practice. On the other hand, Hamilton cycles present

filter-induced dynamics that resemble those found in HP cycles and the Hamilton filter

relies on a rather arbitrary choice for the forecast horizon just as the HP filter depends

on the smoothing parameter. Therefore, a more balanced assessment is that the two filters

provide different views of the data, and that whether one of the two views is more interesting

remains an open question. (This idea is borrowed from Burnside, 1998.) Until this question

is answered, the HP and Hamilton filters should be regarded as complementary tools for

business-cycle analysis.

Previous studies offer a critical evaluation of the Hamilton filter. For instance, Schüler

(2018) uses spectral methods to show that the Hamilton filter emphasizes cycles with longer

duration than typical business cycles and that it mutes shorter cycles, leading to a failure to

reproduce the chronology of U.S. business cycles. Hodrick (2020) applies simulation methods

to compare the Hamilton filter with alternative detrending strategies, including the HP filter,

and finds that the Hamilton filter yields better cyclical estimates for simple models, while

the HP filter performs better for complex models. Compared to these studies, this comment

focuses more narrowly on the mechanical impact the Hamilton filter has on estimated cycles,

which is of particular interest for applied economists.

2. The HP and Hamilton Filters

For completeness, this section provides a brief characterization of the HP and Hamilton

filters. More details can be found in the original publications (Hodrick and Prescott, 1981,

1997; Hamilton, 2018).

Both the HP and the Hamilton filter decompose a time series xt into the sum of two

components: xt = gt + vt, where gt is the trend and vt is the cycle. The difference between

the two filters lies in the statistical restrictions used to identify the trend component.

The HP filter defines the trend component as a smooth series that does not differ much

from the observed series. This objective can be formalized by choosing gt as the solution to

the following program:

min
{gt}Tt=−1

{
T∑
t=1

(xt − gt)2 + λ
T∑
t=1

[(gt − gt−1)− (gt−1 − gt−2)]2
}
, (1)
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where λ ≥ 0 is a smoothing parameter penalizing large changes in the slope of the trend

gt. In particular, the estimated HP trend collapses to the original series when there is no

smoothness penalty (λ→ 0), and it corresponds to a linear time trend when the penalty is

extreme (λ→∞). The estimated cycle verifies vt = xt − gt.
On the other hand, the Hamilton filter defines the trend component as the value that we

would expect for the original series at date t, based on its behavior up to date t − h. This

is formalized using a simple linear regression of the observed variable xt on a constant, the

realization h periods ago xt−h, and p− 1 additional lags xt−h−1, . . . , xt−h−p+1. For quarterly

time series, Hamilton (2018) suggests using h = 8 quarters and p = 4 lags, so that the

regression has the following form:

xt = b0 + b1xt−8 + b2xt−9 + b3xt−10 + b4xt−11 + ut. (2)

The fitted values and residuals from this linear regression correspond to the estimated Hamil-

ton trend and cycle, so gt = x̂t and vt = ût.

3. Cyclical Dynamics of Stock Prices and Consumption

Section III.A in Hamilton (2018) questions the appropriateness of applying the HP filter

to detrend typical economic time series. (Unless otherwise specified, all quotes reported in

this section are from Hamilton’s Section III.A. p. 833.) Hamilton argues that many such

series resemble random walks and shows that detrending a random walk with the HP filter

generates spurious dynamics, in the sense that the extracted cycle features high persistence,

in contrast to the serially uncorrelated innovations of the underlying process. He provides

an empirical example, based on stock prices and consumption. This section reexamines this

example by submitting the Hamilton filter to the same evaluation as the HP filter.

Figures 1 and 2 below reproduce Hamilton’s Figures 2 and 3 using an extended sample.

Data definitions and sources are the same as in Hamilton (2018). Stock prices are measured

as to 100 times the natural log of the end-of-quarter value for the S&P composite stock

price index published by Robert Shiller, available online from http://www.econ.yale.edu/

~shiller/data.htm. Consumption is measured as 100 times the natural log of real personal

consumption expenditures from the U.S. National Income and Product Accounts. The data

are quarterly and run from 1950Q1 to 2019Q4.

Figure 1 reports the autocorrelation structure for the first differences of log stock prices

and real consumption, as well as their cross-correlations. The top panels show that growth

in either series is essentially unpredictable, while the bottom panels indicate that after first

differencing neither series has strong predictive power for the other. These features are in

line with the idea that both series follow random walks.

Figure 2 reports the same statistics for the HP cycles extracted from the two series when

the smoothing parameter takes the standard value λ = 1, 600. As emphasized by Hamilton,
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the cyclical components of stock prices and real consumption display strong persistence, so

that they are predictable from their past values. Furthermore, the cross-correlograms exhibit

rich autoregressive structures with wave-like patterns, indicating that the cyclical component

from one series can be forecast from the cyclical component of the other.

The discrepancy between the dynamic properties of the first differences of the data and

those of HP cycles embodies Hamilton’s claim that the HP filter distorts the series: “The

rich dynamics in [the cyclical components] are purely an artifact of the filter itself and tell

us nothing about the underlying data-generating process. Filtering takes us from the very

clean understanding of the true properties of these series [. . . ] to the artificial set of relations

[found in the cycles, which] summarize the filter, not the data.”

According to Hamilton, two characteristics of the HP filter combine to generate these

spurious dynamics. First, because the HP filter is two-sided, the cyclical estimate at each

date loads on past, present, and future shocks. It follows that the cyclical component “is

both highly predictable (as a result of the dependence on [lagged shocks] and will in turn

predict the future (as a result of dependence on future [shocks]).” Second, the coefficients

relating the cyclical estimate to the underlying shocks “are determined solely by the value

of λ,” so that the HP filter effectively imposes dynamics on the data instead of adapting

to the specific time series at hand. To overcome these deficiencies, Hamilton designs his

detrending approach as an estimated backward-looking regression. Because the coefficients

b0, . . . , b4 in equation (2) are estimated from the data, the filter has the flexibility to adapt

to the underlying DGP. Because the regression uses only past information, the estimated

cyclical component will not depend on future shocks.

Surprisingly, Hamilton (2018) does not report the autocorrelation function for the cycles

extracted from stock prices and real consumption by his alternative approach. Yet, evaluating

both filters on the same dataset would seem like a fair comparison. It would also clarify how

moving from the two-sided, calibrated HP filter to the one-sided, estimated Hamilton filter

affects the cyclical dynamics extracted from the data. Figure 3 fills this gap. Following

Hamilton’s recommendation for quarterly series, the filter uses p = 4 and h = 8, so that the

cyclical components are obtained by regressing each series at date t on the four most recent

observations available at date t− 8.

A striking finding is that the Hamilton cycles display virtually the same dynamic behavior

as the HP cycles: the cyclical components are very persistent (the autocorrelations decay

slowly toward zero); they have strong forecasting power for each other (the cross-correlations

are high at several lags); and there are complex dynamics in cross-correlations that are very

similar to those found in HP-filtered series. Focusing on the absolute size of the correlations,

there appears to be even more persistence and more cross-variable predictability in Hamilton

cycles than in HP cycles. This is confirmed by the statistics reported in Table 1: the first-

order autocorrelations of Hamilton-filtered series are 0.89 for stock prices and 0.90 for real
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consumption, larger than the corresponding values computed from HP-filtered series (0.76

and 0.81 respectively).

Of course, the HP and Hamilton cycles extracted from stock prices and real consumption

are different, as shown in Figure 4 and Table 1. For instance, the Hamilton cycles are about

twice as volatile and exhibit stronger persistence than the HP cycles. Nevertheless, the

contemporaneous correlation between the HP and Hamilton cycles extracted from a given

variable is high: 0.71 for stock prices and 0.66 for real consumption. Although Table 1 does

not report these statistics, the correlation between the HP and Hamilton cycles is maximal

contemporaneously, so that neither series seem to lead or lag the other. Finally, comparison

of the autocorrelation functions highlights their similar dynamics.

These are surprising results, which weaken Hamilton’s case for his alternative to the HP

filter. If one accepts Hamilton’s view that the serial correlation and predictability found in

the HP cycles are artificial, then it is difficult not to draw the same conclusion regarding the

same features in the Hamilton cycles. Alternatively, if one is willing to accept the cyclical

component from Hamilton’s filter, then comparing Figure 2 to 3 would indicate that the HP

filter does at least a satisfactory job estimating the cyclical properties of the data. In either

case, based on this empirical example, it is unclear why one would choose the Hamilton filter

over the HP filter.

Another important property appears in Figure 5, which compares the historical path of

log stock prices with the estimated HP and Hamilton trends. (Reporting the same figure for

consumption would be less interesting because the data and the trends are more difficult to

disentangle visually due to the smoothness of the series.) Unsurprisingly, the HP trend is a

smooth variable that lies well inside the path of the actual time series. As Hamilton argues,

the HP filter generates this smooth trend by making use of both past, present, and future

observations of the variable. If Hamilton regards this behavior as a drawback (“HP-filtered

series exhibit the visual properties that they do, precisely because they impose patterns that

are not a feature of the data-generating process and could not be recognized in real time”, p.

835), any smoothed estimate would also make use of all sample information, including future

observations not available in real time. For instance, output-gap estimates based on DSGE

models (e.g., Edge, Kiley, and Laforte, 2008; Justiniano, Primiceri, and Tambalotti, 2013)

or trend-cycle decompositions based on unobserved component models (e.g., Harvey and

Trimbur, 2003; Harvey, Trimbur, and Van Dijk, 2007) also exploit all available information

without raising particular suspicion.

As expected, the Hamilton trend is not as smooth as the HP trend because it does not

make use of future information. However, a direct consequence of using an 8-quarter-ahead

forecast is that the Hamilton trend reacts to economic developments with a mechanical

two-year delay. This is especially easy to spot in the later part of the sample: the trend

systematically lags the 1995-2000 rise in stock prices, the burst of the dot-com bubble in
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2001-2002, the 2003-2007 rebound, and the 2008-2009 financial crisis by a constant window

of 8 quarters. To many economists, this pattern would appear as a drawback and few people

would consider the red line in Figure 4 as the best possible estimate of the trend in stock

prices. Therefore, while one can sympathize with Hamilton’s objective to avoid using future

information in the trend-cycle decomposition, one should also realize that his filter generates

peculiar timing implications.

4. Simple Properties of the Hamilton Filter

This section elaborates on the previous example by showing how the Hamilton filter me-

chanically shapes the statistical properties of the cyclical component it estimates. The

discussion focuses on the random-walk case for simplicity, but the generalization is obvious.

Let xt and yt follow two random walks: xt = xt−1 + εt, yt = yt−1 + ηt, with εt and ηt two

white noise processes with variances σ2
ε and σ2

η and covariance ρσεση. For instance, xt might

represent the log of stock prices and yt the log of real consumption: the two variables have

low forecasting power for each other, but a common shock might induce contemporaneous

comovement.2

Section IV.B in Hamilton (2018) shows that, in population, the cyclical components ob-

tained by applying the Hamilton filter to xt and yt are equal to the forecast errors at horizon

h:

vxt = xt − xt−h =
h−1∑
j=0

εt−j, vyt = yt − yt−h =
h−1∑
j=0

ηt−j. (3)

Since εt and ηt are white noise processes, it is straightforward to compute the second moments

of these random variables:

Var(vxt ) = hσ2
ε , Var(vyt ) = hσ2

η,

Corr(vxt , v
x
t−j) = Corr(vyt , v

y
t−j) =

h− j
h

if j = 0, 1, . . . , h, = 0 if j ≥ h+ 1,

Corr(vxt , v
y
t−j) = Corr(vyt , v

x
t−j) =

(h− j)ρ
h

if j = 0, 1, . . . , h, = 0 if j ≥ h+ 1.

These moments highlight three key properties of the Hamilton filter. First, it extracts a

persistent cycle out of a random walk. Second, it extracts interrelated cycles out of correlated

random walks. Third, the variances, the persistence, and the joint dynamics of the cycles are

mechanically determined by the forecast horizon h used by the filter. All three properties

2This bivariate random-walk representation provides a good approximation of the data. Letting xt denote

100 times the log of stock prices and yt 100 times the log of real consumption, estimating a simple first-order

vector autoregression yields the following parameter values:[
xt

yt

]
=

[
−0.76

2.47

]
+

[
0.98 0.03

0.00 0.99

][
xt−1

yt−1

]
+

[
ε̂t

η̂t

]
, Var

[
ε̂t

η̂t

]
=

[
51.89 0.99

0.99 0.62

]
.

The implied correlation between the innovations is ρ̂ = 0.17.
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follow from Hamilton’s definition of the cycle as a forecast error: as shown by equation (3),

two realizations of vxt and vyt separated by j periods share h− j common innovations when

j ≤ h, which necessarily leads to serial correlation and comovement. While the random-walk

setting makes this feature especially apparent given the permanent effect of shocks, similar

persistence and predictability would arise from applying the Hamilton filter to more general

ARIMA processes.

These properties explain the dynamics found in Hamilton-filtered stock prices and real

consumption. Thus, the empirical example in Section 3 represents the normal behavior of

the filter and demonstrates that filter-induced dynamics are as present in Hamilton cycles

as in HP cycles. This finding challenges Hamilton’s claim that his alternative detrending

approach can avoid all drawbacks of the HP filter.

The choice of the forecast horizon h provides another illustration of filter-induced dy-

namics. Hamilton (2018, Section IV.C, p. 838) motivates his recommendation of h = 8 for

quarterly data from two arguments: (i) having h be a multiple of 4 is useful to purge the

estimated cycles from potential seasonal patterns, and (ii) the notion that “a two-year hori-

zon should be the standard benchmark” for business-cycle analysis. If the first argument is

objective, the second one seems less empirically or theoretically grounded. For instance, the

frequency band typically associated with business cycles ranges from six quarters to eight

years (e.g., Stock and Watson, 1999), so that it is not clear what makes h = 8 the benchmark

choice.

Alternatively, Angeletos, Collard, and Dellas (2020) show that the shock which contributes

most to the variance of key macroeconomic variables over the standard business-cycle fre-

quency band (6-32 quarters) has a footprint in the time domain that peaks within a year.

This result suggests that setting h = 4 might constitute an interesting alternative for quar-

terly data. For the many macroeconomic time series featuring random-walk like behavior,

this change would roughly halve the variance and the persistence of the estimated cycles

compared to Hamilton’s benchmark of h = 8. More generally, while the choice of the fore-

cast horizon in the Hamilton filter has important consequences for the estimated trend-cycle

decomposition, there is no conclusive argument to settle on the best value. Thus, the arbi-

trariness in choosing h for the Hamilton filter mirrors that in choosing λ for the HP filter.

Overall, both the empirical example and analytical discussion emphasize that the popula-

tion characteristic estimated by the Hamilton filter, the forecast error in the linear regression

of the variable at t+h on a constant and p lags, corresponds to a very particular view of the

trend-cycle decomposition. In particular, the Hamilton approach has mechanical effects on

the timing of the estimates relative to the data, as well as on the persistence and volatility of

the estimated cyclical component. In the important random-walk case, these filter-induced

dynamics resemble those found in HP cycles when it comes to “artificial” serial correlation
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and “spurious” predictability. Highlighting these properties of the Hamilton filter to the

audience of applied economists is the main purpose of this comment.

5. Conclusion

Hamilton (2018) argues that economists should stop using the HP filter. However, the

alternative filter proposed by Hamilton can be criticized using essentially the same arguments

invoked against the HP filter, namely the presence of filter-induced dynamics in the estimated

cycles and the relative arbitrariness of a key parameter choice. Furthermore, the trends

estimated by the Hamilton approach will lag the data by construction. These results cast

doubts on Hamilton’s claim that his filter will always outperform the HP filter in practice. A

more balanced assessment is that the two filters provide different ways to look at the cyclical

properties of the data, with neither appearing to be clearly superior.

More generally, there is really nothing new or wrong in recognizing that detrending data

affects its statistical properties in a way that depends on the chosen approach: using a

polynomial time trend, the HP filter, a band-pass filter, or the Hamilton filter to separate

the trend from the cycle will necessarily lead to different estimates of the cyclical compo-

nent. Canova (1998) illustrated this point nicely twenty years ago. As stressed by Burnside

(1998), this is not a major issue when the goal is to relate stationary economic models to

non-stationary data, since it is always possible to compare filtered real-world data with fil-

tered series from the model. For instance, the widespread software package Dynare (2011)

automatically computes moments for HP- and band-pass filtered series simulated from DSGE

models, allowing for straightforward comparison between theory and data. It would be use-

ful to also implement the Hamilton filter, providing economists yet another window through

which they can compare their models to reality.
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Figure 1. Autocorrelations and cross-correlations for the first differences of

log stock prices and real consumption.
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Upper left: Autocorrelations of the first difference of end-of-quarter value for S&P composite. Upper

right: Autocorrelations of the first difference of real consumption. Lower panels: Cross-correlations.
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Figure 2. Autocorrelations and cross-correlations for HP-filtered stock prices

and real consumption.
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Upper left: Autocorrelations of HP-filtered end-of-quarter value for log S&P composite. Upper right:

Autocorrelations of HP-filtered log real consumption. Lower panels: Cross-correlations. Smoothing

parameter: λ = 1, 600.
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Figure 3. Autocorrelations and cross-correlations for Hamilton-filtered stock

prices and real consumption.
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Upper left: Autocorrelations of Hamilton-filtered end-of-quarter value for log S&P composite. Upper

right: Autocorrelations of Hamilton-filtered log real consumption. Lower panels: Cross-correlations.

Regression parameters: p = 4 and h = 8.
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Figure 4. HP- and Hamilton-filtered stock prices and real consumption.
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Solid black lines: HP-filtered series (λ = 1, 600). Dashed red lines: Hamilton-filtered series (p = 4,

h = 8).



16

Figure 5. HP and Hamilton trends for stock prices.
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Thin black line: Data. Thick blue line: HP trend (λ = 1, 600). Dashed red line: Hamilton trend (p = 4,

h = 8).
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Table 1. Business-cycle statistics.

Panel A - Volatility and persistence

Standard deviation Autocorrelation

Stock prices

First difference 7.20 0.12

HP cycle 9.99 0.76

Hamilton cycle 20.95 0.89

Real consumption

First difference 0.81 0.09

HP cycle 1.23 0.81

Hamilton cycle 2.73 0.90

Panel B - Contemporaneous correlation

Stock prices Real consumption

First diff. HP filter Hamilton filter First diff. HP filter Hamilton filter

Stock prices

First difference 1.00

HP filter 0.34 1.00

Hamilton filter 0.31 0.71 1.00

Real consumption

First difference 0.18 0.29 0.29 1.00

HP filter −.15 0.45 0.33 0.24 1.00

Hamilton filter −.03 0.36 0.45 0.40 0.66 1.00

Notes. Stock prices: 100 times the natural log of the end-of-quarter value for the S&P composite stock

price index. Consumption: 100 times the natural log of real personal consumption expenditures from

the U.S. NIPA. Sample: 1950Q1 to 2019Q4. HP cycles computed with λ = 1, 600; Hamilton cycles

computed with p = 4 and h = 8.
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