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Abstract. Artificial Neural Networks (ANNs) are powerful tools that can solve dy-

namic programming problems arising in economics. In this context, estimating ANN

parameters involves minimizing a loss function based on the model’s stochastic func-

tional equations. In general, the expectations appearing in the loss function admit

no closed-form solution, so numerical approximation techniques must be used. In this

paper, I analyze a bias-corrected Monte Carlo operator (bc-MC) that approximates

expectations by Monte Carlo. I show that the bc-MC operator is a generalization of

the all-in-one expectation operator, already proposed in the literature. I propose a

method to optimally set the hyperparameters defining the bc-MC operator and illus-

trate the findings numerically with well-known economic models. I also demonstrate

that the bc-MC operator can scale to high-dimensional models. With just a few min-

utes of computing time, I find a global solution to an economic model with a kink in

the decision function and more than 100 dimensions.
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Résumé Non Technique

La transmission de la politique monétaire peut varier avec l’hétérogénéité des agents

économiques. Par exemple, les consommateurs ayant différents niveaux de richesse

peuvent répondre différemment aux changements de taux d’intérêt. D’autre part, les

consommateurs appartenant à différentes catégories d’âge peuvent avoir des horizons

de planification différents. Les entreprises avec moins de chiffre d’affaires ou de capital

peuvent se trouver confrontées à des contraintes de crédit lorsqu’elles souhaitent financer

de nouveaux investissements. Enfin, les banques avec moins de capital ou de liquidité

peuvent être caractérisées par une offre de crédit qui est moins sensible aux changements

de politique monétaire.

Les économistes ont développé des modèles théoriques de plus en plus complexes pour

prendre en considération ces différences entre ménages, entreprises ou banques. Les

modèles économiques de grande dimension apparaissent par exemple lorsqu’on considère

plusieurs secteurs ou plusieurs pays, des modèles d’économie de l’environnement et des

ressources naturelles, ou des modèles avec différents types d’actifs ou différents marchés.

Parmi les exemples les plus courants, on peut citer les modèles dans lesquels les agents

diffèrent par leur âge, tels que les modèles à générations imbriquées (OLG), ou les modèles

dans lesquels les agents diffèrent selon leur richesse, tels que les modèles néo-keynésiens

à agents hétérogènes (HANK).

La résolution de ces modèles de grande dimension requiert de nouvelles approches.

Cet article présente une nouvelle méthode pour utiliser les réseaux de neurones artificiels

(RNAs) pour résoudre des modèles économiques. Les RNAs sont des outils puissants

pour l’analyse économique, car ils permettent d’approximer efficacement les solutions

de modèles économiques complexes de grande dimension, pour lesquels les méthodes

plus traditionnelles échouent souvent ou sont impossibles. Ce papier contribue de trois

manières différentes à la littérature : il (i) généralise une approche déjà existante, tout

en lui offrant une nouvelle base théorique (ii) illustre la nouvelle méthode proposée en

résolvant des modèles économiques bien connus (iii) compare la performance des RNAs

par rapport aux autres méthodes traditionnelles en considérant les conditions qui peuvent

favoriser une approche par rapport aux autres.
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Non-Technical Summary

Central banks are aware that the transmission of monetary policy depends on hetero-

geneity across agents. Consumers with different wealth levels may respond differently

to changes in interest rates. Consumers of different ages may have different planning

horizons. Firms with lower turnover or capital may have more limited access to credit

to finance new investments. Finally, banks with lower levels of capital or liquidity may

supply less credit.

Economists have developed increasingly complex theoretical models to allow for these

differences across households, firms or banks. For instance, high-dimension models arise

when considering multiple sectors or multiple countries, environmental and natural re-

source economics, or multiple asset types or multiple markets. Some leading examples

include models in which agents differ by their age, as in the overlapping generations

(OLG) models, or models in which agents differ by their wealth, as in Heterogeneous

Agent New Keynesian (HANK) models.

Solving these high-dimensional models requires new methods. This paper presents a

new method to apply artificial neural networks (ANNs) to solve economic models. ANNs

are attractive tools for economists because they can very efficiently approximate the

solutions to complex high-dimensional economic models, where more traditional methods

often fail or are not feasible. This paper makes three contributions: it (i) generalizes

an existing ANN method to solve economic models, providing it with new theoretical

foundations (ii) illustrates how to use this new method to solve well-known economic

models (iii) discusses when ANNs perform better than more traditional methods.
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1. Introduction

This paper belongs to the burgeoning field that applies machine learning tools to

solve economic models. In particular, Artificial Neural Networks (ANNs) have three

main advantages for economists. First, ANNs have been shown to be universal function

approximators, in the sense that any Borel measurable function from one finite dimen-

sional space to another can be approximated by an ANN (Hornik, Stinchcombe, and

White, 1989).1 In almost all cases, the value and policy functions arising from economic

models are within the set of functions that can be approximated by ANNs (Blackwell,

1965). Second, ANNs are resilient to the curse of dimensionality, which usually restricts

economists to work with low-dimensional models or to rely on linearization around a

steady-state (Barron, 1993). Third, ANNs are usually estimated with the backpropa-

gation algorithm that allows them to learn efficiently and quickly the underlying model

(Rumelhart, Hinton, and Williams, 1986).2

The fact that ANNs are efficient universal function approximators in high-dimensional

spaces was illustrated when a deep artificial neural network defeated the world leader at

the game of Go, which has a state-space of 3361 (Silver et al., 2016).3 While state-of-the-

art economic models have more modest state-spaces, recent developments in economics

have led the number of dimensions to explode. Models with partially insurable risk have

a state-space which often includes the distribution of agents across some dimension,

usually wealth (Aiyagari, 1994 and Krusell and Smith, 1998). Heterogeneity of house-

holds is a key ingredient of modern macroeconomic HANK models, because it affects the

transmission mechanism of monetary policy (Kaplan, Moll, and Violante, 2018). High-

dimensional state-spaces also arise from models with overlapping generations (Krueger

and Kubler, 2006), from studies of firm dynamics (Khan and Thomas, 2008), or from

multi-country models (Backus, Kehoe, and Kydland, 1992). Such models are usually

solved by linearization around the non-stochastic steady-state. However, global methods

1In this paper, I use the term ANN to denote the standard multi-layer feedforward network (see for

instance Schmidhuber (2015)).
2The backpropagation algorithm can be very efficiently executed on specialized units such as GPUs,

which can reduce computing times by orders of magnitude. While alternative methodologies such as

Value Function Iteration or Time Iteration may be amenable to GPUs, careful case-specific implemen-

tations may be warranted.
3The game of Go with a 19 × 19 grid has 361 placement spaces. Each space can be unoccupied or

contain either colored stone, or no stone.
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are sometimes preferable because (i) linearization may eliminate interesting amplification

mechanisms4 (ii) a non-stochastic steady-state may not exist in the first place.5

One peculiarity of using ANNs in the present context is that there is a potentially

infinite number of observations that can be used for training.6 In fact, the Bellman or

Euler equations characterizing a model must hold on the entire continuous domain on

which the problem is defined. Thus, there are no restrictions on the level of refinement a

researcher may select when sampling values from the state-space. This differs from more

common machine learning applications in which one attempts to predict an outcome

using a finite sample (Goodfellow, Bengio, and Courville, 2016). As in Maliar, Maliar,

and Winant (2021), I define a loss function that must hold in expectation over the

state variables. I approximate the expectation over state variables using Monte Carlo

integration, so that the method can solve models with high-dimensional state variables.

Most economic models also involve a second type of expectation: Bellman or Euler

equations often include an expectation with respect to the value of next period’s shocks.

I also use Monte Carlo integration to approximate the expectation over shock variables,

so that the methodology developed in this paper can also be used to solve models with

high-dimensional shock variables.

For a given value of the state vector, the Bellman or Euler equations characterizing

the model define a system of J stochastic functional equations that must be equal to

zero in expectation. To measure the distance from zero, I use the L2 norm, which gives

rise to a loss function containing the square of expectations. It is well known that using

the square of the empirical mean to estimate the square of the population mean leads

to a small-sample bias (see Das, 1975). To correct for this bias, I use the minimum

variance unbiased estimator (MVUE) of the square of the mean, which contains a bias-

correction term. One key result of the paper is that using the MVUE to approximate

the square of expectations transforms a problem with two nested expectations into a

4Linearized solutions imply certainty equivalence, which makes it difficult to talk about the welfare

effects of uncertainty (Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide, 2016).
5See Coeurdacier, Rey, and Winant (2011) for a discussion. For example, a non-stochastic steady-

state may not exist for models of small open economies (Schmitt-Grohé and Uribe, 2003) or models of

portfolio choices (Devereux and Sutherland, 2011).
6The term “training” in the machine learning literature refers to the estimation of ANN parameters.
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problem involving a single expectation. I call this non-nested integral a bias-corrected

Monte Carlo (bc-MC) operator.7

I show that the all-in-one operator of Maliar, Maliar, and Winant (2021) is a special

case of the bc-MC operator. The former only uses two independent shocks for each

realization of the state variable, while the bc-MC operator may use N independent

shocks for each realization of the state variable. I propose a criterion to optimally choose

the number of independent shocks, which minimizes the integration error of the loss

function. Because the bc-MC operator is an unbiased estimator of the loss function,

the integration error is equal to the variance of the loss, which can be easily estimated

by simulation. I illustrate the performance of our bc-MC operator using the stochastic

neoclassical growth model and a model with a borrowing constraint. I also compare the

performance the methodology based on the bc-MC operator to the Time Iteration (TI)

algorithm and show that the former has superior scaling properties. When the dimension

of the problem gets large, the bc-MC operator clearly outperforms the TI algorithm when

considering both speed and accuracy. Indeed, I solve a model with a borrowing constraint

using a global method with more than 100 dimensions on a consumer-grade laptop in

approximately 4 minutes.

This paper proceeds as follows. I first discuss how the method fits within the existing

literature. I then formally introduce the bc-MC operator and discuss the optimal choice

of hyperparameters. The next section illustrates the performance of the bc-MC operator

using standard models from the economic literature. The final section concludes.

2. Related literature

This paper is related to the literature that develops global methods to solve high-

dimensional economic models for which linearization techniques are ill-suited. When lin-

earization around a steady-state is not appropriate, traditional global methods based on

7It would be more precise to name it the “bias-corrected Monte Carlo estimator”, as an estimator

is a function used to estimate an unknown population parameter based on a sample of data. In this

paper, I am using an estimator to calculate an estimate of the model’s loss function based on simulated

data. The expectation operator is a mathematical operation that maps a random variable X to its

expected value denoted as E(X). However, Maliar, Maliar, and Winant (2021) use the term “all-in-one

expectation operator” when developing their method for solving economic models with ANN. I will

adopt their terminology to align my contribution with their work.



7

dense grids very rapidly lose tractability because of the curse of dimensionality. As noted

by Bellman (1961), the number of grid points grows exponentially with the dimension

of the problem. Solutions have been developed to deal with the curse of dimensionality.

Krueger and Kubler (2004) and Judd et al. (2014) advocate the use of methodologies

based on Smolyak’s algorithm to compute sparse grids (Smolyak, 1963). Brumm and

Scheidegger (2017) develop a method based on adaptive sparse grids, for which grid

points are only added where they are most needed, for instance in regions with steep

gradients or kinks. Scheidegger and Bilionis (2019) develop a computational framework

that can compute global solutions to high-dimensional economic models using Gaussian

processes. As discussed in Azinovic, Gaegauf, and Scheidegger (2022) none of the ap-

proaches can satisfactorily solve an economic model with (a) stochasticity, (b) a very

high-dimensional state space, (c) strong non-linearities or kinks, (d) irregular geometries

for the ergodic set of state variables.

In this paper, I build upon the literature that uses machine learning methods, espe-

cially Artificial Neural Networks (ANNs), to generate computational methods that can

cope with the combination of (a)-(d). Machine learning methods have already been suc-

cessfully applied to solve large scale differential equations arising from physical systems

(Raissi and Karniadakis, 2018 and Raissi, Perdikaris, and Karniadakis, 2019). They

have also been applied in economics. In a model with heterogeneous agents, Fernández-

Villaverde, Hurtado, and Nuno (2019) use an ANN to approximate agents’ perceived law

of motion, instead of using a log-linear function, as it in most applications of the Krusell

and Smith algorithm. However, the authors rely on a traditional finite-difference scheme

to solve for the Hamilton-Jacobi-Bellman equation characterizing the model.

This paper is more closely related to the work of Azinovic, Gaegauf, and Scheidegger

(2022), who solve a large-scale OLG model by approximating the policy function with

an ANN and minimizing a loss function that takes into account the stochastic difference

equations characterizing the model. However, the authors assume discrete shocks and

can therefore exactly evaluate the expectation with respect to next’s period shocks. The

authors note that continuous shocks would require numerical integration methods, but

they observe that the computational cost of approximating the expectation operator

grows linearly with the number of quadrature nodes. In independent work, Maliar,

Maliar, and Winant (2021) provide an elegant solution to this numerical integration
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problem by using Monte Carlo integration to approximate the expectation with respect to

next period’s shocks. However, the resulting loss function contains two nested integrals,

which are both slow to evaluate and usually inefficient (see Rainforth et al., 2018).

The authors make a technical contribution by showing how two nested integrals can be

transformed into a single integral using two series of independent shocks following the

same distribution, which they call the all-in-one operator.8 In this paper, I build upon

this “unnesting” idea and extend it.

I make three main contributions to the existing literature. First, I introduce a new es-

timator that generalizes the all-in-one operator proposed by Maliar, Maliar, and Winant

(2021). Instead of using two series of independent shocks, one may use N series of in-

dependent shocks. In doing so, I provide a new theoretical derivation for the all-in-one

operator and its generalization. I show that the all-in-one operator is the result of using

an unbiased estimator for the square of the mean when using Monte Carlo integration to

approximate expectations. This is why I call this estimator a bias-corrected Monte Carlo

operator (bc-MC). Second, I derive theoretical properties characterizing the bc-MC op-

erator. This allows me to provide actionable recommendations regarding the optimal

choice of the hyperparameters characterizing the bc-MC operator, taking into consider-

ation the fact that ANNs are trained by stochastic gradient descent or its variants. I

illustrate these recommendations with two different economic models. Third, I solve a

high-dimensional model using the bc-MC operator methodology and compare the results

to the ones obtained using the Time Iteration (TI) algorithm with a dense grid. In a

low-dimensional setting, the TI algorithm outperforms the bc-MC methodology, but in

a high-dimensional setting the bc-MC operator outperforms the TI algorithm by sev-

eral order of magnitudes. Hence, I provide new insights on when it is preferable to use

machine learning methods to solve economic models.

3. The Bias-Corrected Monte Carlo Operator

In this section, I discuss how solving a general economic model can be reformulated as

the problem of finding the value of a parameter vector θ that minimizes a loss function

derived from the equations in the model. I focus on the case when θ is the parameter

vector of an ANN, which can be trained by gradient descent or its variants. I then

8This approach has also been used in the non-economic literature by Goda (2017) and Rainforth

et al. (2018).
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introduce the bc-MC operator, which uses Monte Carlo techniques to approximate ex-

pectations and correct for a small-sample bias. I then derive some key properties of the

bc-MC operator, which allows me to discuss how best to choose the hyperparameters of

the bc-MC operator.

3.1. Structure of economic models. Many economic models are characterized by a

stochastic functional equation of the form:9

Eε

(
f(s, ϵ)

)
= 0 for ∀s ∈ S (1)

where s is vector of state variables and ε a vector of i.i.d. shocks occurring after

decisions are made. Equation (1) is usually a Bellman or an Euler equation. A parametric

approximation of the solution f(s, ϵ|θ) can be obtained by minimizing a loss function of

the form:

L(θ) = Es

[
Eε

(
f(s, ϵ|θ)

)2]
(2)

The inner integral is the usual integration with respect to the value of next period’s

shock. The inner integral is squared, which corresponds to finding the value of θ that

minimizes the distance of Eε

(
f(s, ϵ|θ)

)
from 0 using the L2 norm.

The outer integral ensures that the stochastic functional equation holds for all values

of the state vector s in its domain S. Treating the vector s as random vector allows

us to use Monte Carlo integration, which is tractable even in high-dimensional settings.

An alternative would consist in selecting a grid for s and finding the value for θ such

that (2) is minimized across these grid points. However, the number of grid points grows

exponentially with the number of dimensions.

Since ANNs are universal function approximators (Hornik, Stinchcombe, and White,

1989) that work well in high-dimensional settings (Barron, 1993), I focus on the case in

which θ is the parameter vector of an ANN. In this context, solving an economic model

9To simplify the presentation, I focus on the case in which the model is characterized by a single

stochastic functional equation. For the case where the economic system is characterized by a system of

J stochastic equations, see section A of the Appendix.
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consists in finding the value for θ that minimizes the loss function (2).10 ANNs are

generally trained using the stochastic gradient algorithm or its variants. The stochastic

gradient algorithm is an iterative procedure in which the new guess for θ is updated

using information from the gradient of the loss function:

θi+1 = θi − γ∇θL(θi) (3)

where γ is a parameter called the learning rate and ∇θL(θi) denotes the gradient of

loss function evaluated at the current guess θi. One difficulty with (3) is that closed-

form solutions for (2) and its gradient are generally unavailable. Instead, one must use

an approximation for the loss function.

3.2. Bias-corrected Monte Carlo operator. In general, there are no closed-form

solutions for the expectations appearing in (2). To approximate these expectations, one

may use Monte Carlo integration separately for the two integrals (Es and Eε):

LM
M,N(θ) =

1

M

M∑
m=1

[ 1

N

N∑
n=1

f(sm, ϵn|θ)
]2

(4)

The next proposition shows that the estimator introduced in equation (4) has a small-

sample bias.

Proposition 1. The bias of
[

1
N

∑N
n=1 f(sm, ϵn|θ)

]2
is equal to

σ2
f,sm

N
, with σ2

f,sm
the vari-

ance of f conditional on the value s = sm.

Proof. Using the equality Var[f(x)] = E[f(x)2]−E[f(x)]2 and the fact that the variance

of the sum of independent variables is equal to the variance of the sum, one finds:

Eϵ[
( 1

N

N∑
n=1

f(sm, ϵn|θ)
)2

] =
(
Eϵ[

1

N

N∑
n=1

f(sm, ϵn|θ)]
)2

+Varϵ(
1

N

N∑
n=1

f(sm, ϵn|θ))

Eϵ[
( 1

N

N∑
n=1

f(sm, ϵn|θ)
)2

] = µ2
sm +

σ2
f,sm

N

(5)

where µ2
sm ≡ Eϵ[f(sm, ϵ|θ)]2 and σ2

f,sm
≡ Varϵ(f(sm, ϵ|θ)). □

10Multi-layer feedforward networks usually have highly non-convex loss functions, with many local

minima. However, while local minima are numerous, they lead to very similar predicted values (Choro-

manska et al., 2015).
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Because the sample variance is an unbiased estimator of the population variance,

proposition 1 suggests the following bias-corrected Monte Carlo operator, defined for

N ≥ 2:11

LU
M,N(θ) =

1

M

M∑
m=1

{[ 1

N

N∑
n=1

f(sm, ϵn|θ)
]2

−
S2
m,n

N

}
(6)

with S2
m,n ≡ 1

N−1

∑N
n=1

(
f(sm, ϵn|θ)− µ̂sm

)2

and µ̂sm ≡ 1
N

∑N
n=1 f(sm, ϵn|θ).

The operator in equation (6) relies on solid theoretical foundations, because in the

class of unbiased estimators of the square of the population mean µ2
sm , the one with the

smallest variance is exactly given by µ̂2
sm − S2

m,n

N
. In statistical terms, µ̂2

sm − S2
m,n

N
is the

minimum variance unbiased estimator (MVUE) of µ2
sm (see for instance Das (1975)).

The next proposition shows that the bias-corrected Monte Carlo operator defined in

equation (6) is a generalization of an estimator that has already been proposed in the

literature.

Proposition 2. (1) The bias-corrected Monte Carlo operator (6) can be expressed

as

LU
M,N(θ) =

2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

f(sm, ϵ
i
m|θ)f(sm, ϵjm|θ) (7)

where ϵi and ϵj are i.i.d. shocks with the same distribution as ϵ.

(2) In the special case with N = 2

LU
M,2(θ) =

1

M

M∑
m=1

f(sm, ϵ
1
m|θ)f(sm, ϵ2m|θ)

Proof. See Appendix B. □

Proposition 2 shows that using the MVUE to approximate the square of the inner

expectation has the virtue of transforming the two nested integrals into a single non-

nested integral. This matters because nesting Monte Carlo estimators generally leads to

efficiency losses (see Rainforth et al., 2018).

Proposition 2 also shows that the bias-corrected Monte Carlo operator generalizes the

all-in-one expectation operator of Maliar, Maliar, and Winant (2021). Indeed, given a

11Note that LU
M,N (θ) is defined for N ≥ 2, because the calculation of the sample variance S2

m,n is

needed.
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desired number of function evaluations required to calculate the loss function equal to

2T with T ≡ MN
2
, one may use two function calls for each value of sm, which is exactly

the all-in-one expectation operator. Alternatively, one may use T function calls for each

value of sm, which increases the accuracy of the expectation Eε, at the detriment of the

accuracy with respect to Es, because only two function calls are left for each value of ϵim.

For a given T , proposition 2 does not determine the optimal choice of M and N . A

natural criterion consists in selecting the combination of M and N that minimizes the

integration error given by the distance of LU
M,N(θ) from its true value L(θ). Because I

use Monte Carlo integration, the integration error is a random variable, so I choose M

and N to minimize the mean squared integration error. The next proposition shows that

the mean squared integration error is equal to the variance of the loss function.

Proposition 3. Let eM,N(f |θ) denote the integration error, defined as

eM,N(f |θ) ≡ Es

[
Eε

(
f(s, ϵ|θ)

)2]
− LU

M,N(θ) (8)

The mean squared integration error is equal to

E
[
eM,N(f |θ)2

]
= Var(LU

M,N(θ)) (9)

Proof. See Appendix C. □

The mean squared error of an estimator can be written as the sum of the variance of

the estimator and the square of its bias. The fact that the mean squared integration

error is equal to the variance of the loss function is a direct consequence of the fact that

the bc-MC operator is an unbiased estimator of the loss function, independent of the

choice of M and N .

ChoosingM andN to minimize the variance of the loss function can be further justified

by noting that ANNs are trained by stochastic gradient descent (or its variants). At each

step of gradient descent, the value of the loss function changes for two reasons: (i) because

the new value for θ leads to a value of LU
M,N(θ) that is closer to the true value L(θ) (ii)

because the values of s and ϵ used to approximate the expectation have changed. The

smaller the noise caused by Monte Carlo integration, the more accurate is the gradient
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descent step, and the faster the algorithm converges (see for instance Katharopoulos and

Fleuret, 2018).

Intuitively, in a model the role of uncertainty is limited12, one would like to have a

high value for M and a small value for N . One would also expect that models that are

more non-linear with respect to the state space would require a higher M . The next

proposition formalizes this intuition.

Proposition 4. (1) The variance of the loss function can be expressed as

Var(LU
M,N(θ)) =

1

T (N − 1)

[
Var

(
f(sm, ε

1
m|θ)f(sm, ε2m|θ)

)
+ 2

(
N − 2)Cov(f(sm, ε

1
m|θ)f(sm, ε2m|θ), f(sm, ε1m|θ)f(sm, ε3m|θ))

+ 2
(N(N − 1)

4
−N +

3

2

)
Cov(f(sm, ε

1
m|θ)f(sm, ε2m|θ), f(sm, ε3m|θ)f(sm, ε4m|θ)

)]
(10)

where ε1, ε2, ε3 and ε4 are four independent random variables, with the same

distribution as ε.

(2) If f(sm, εm|θ) = f(εm|θ), ∀s ∈ S:

Var(LU
M,N(θ)) =

1

T (N − 1)
Var

(
f(sm, ε

1
m|θ)

)2
+

2

T
E
[
f(sm, ε

1
m|θ)

]2
Var

(
f(sm, ε

1
m|θ)

)
(11)

(3) If f(sm, εm|θ) = f(sm|θ), ∀εm ∈ E:

Var(LU
M,N(θ)) =

1

M
Var

(
f(sm, ε

1
m|θ)2

)
(12)

Proof. See Appendix D. □

The first part of proposition 4 shows that, for whatever the choice of M and N ,

the variance of the loss function can be decreased by increasing T , which corresponds

to an increase in the total number of function evaluations required for each evaluation

12In a single-innovation process model, an increase in economic uncertainty is commonly characterized

as an increase in the variance of the innovation process. In the following numerical section, I will

explore this form of uncertainty. Other perspectives are that uncertainty increases when the number of

innovation processes increases, or when the likelihood of rare events rises.
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of the loss function. One drawback of increasing T is the corresponding increase in

computational time.

The second and third parts of proposition 4 suggest ways to reduce the variance of the

loss function, for a constant value of T . On the one hand, in the limit case in which the

state vector does not contribute to the variance of the loss function, the optimal choice is

the maximum possible value for N : M = 2 and N = T (proposition 4.2). On the other

hand, in the limit case in which the shock vector does not contribute to the variance

of the loss function, the optimal choice consists is the maximum possible value for M :

M = T and N = 2 (proposition 4.3).

To summarize, the bigger the role of shocks in the model, the more ε contributes to

the overall variance of the loss function, and the more likely the optimal choice is N = T .

The less smooth is the state-space (for instance because of borrowing constraints), the

more s contributes to the overall variance of the loss function, and the more likely the

optimal choice is N = 2. I illustrate these properties in the next section.13

4. Numerical illustration

In this section I solve three economic models using the bc-MCmethodology. I first solve

a simple stochastic growth model, which illustrates the role of uncertainty in the optimal

choice of hyperparameters M and N . I then solve an optimal consumption-saving model

with a borrowing constraint, which highlights how curvature and non-smoothness in the

state space affects M and N . In the third numerical exercise, I increase the dimension

of the consumption-saving model with a borrowing constraint and see how it affects the

performance of the bc-MC methodology.

4.1. Stochastic growth model. Consider an agent maximizing her inter-temporal dis-

counted utility

max
{ct}∞t=0

E
[ ∞∑

t=0

βtu(ct)
]

(13)

13Note that proposition 4 is not a statement on the variance of the state or shocks vectors, but rather

a statement on the variance of f(sm, εm|θ).
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with y0 given.14 She enters period t with income yt and chooses her consumption level

ct subject to the constraints 0 ≤ ct ≤ yt. What is saved in the current period is

used for production to generate income next period. Income next period is stochastic

and takes the following form: yt+1 = g(yt − ct)ηt+1 with η denoting i.i.d. productivity

shocks. Let us assume that preferences can be represented by a logarithmic utility

function u(c) = log(c), the production function is Cobb-Douglas g(k) = kα, the discount

factor is positive but strictly less than one, β ∈ (0, 1), and that productivity shocks are

lognormally distributed ηt ≡ η(νt) = exp(µ + σννt), with ν a standard Normal random

variable.

Solving the model involves finding the value of parameter vector θ such that the

consumption function c(y|θ) satisfies the Euler equation characterizing the model:

Eν

[
u′
(
c(y|θ)

)
− βu′

(
c
(
g
(
y − c(y|θ)

)
η(ν)

∣∣∣θ)g′(y − c(y|θ)
)
η(ν)

)]
= 0 (14)

Equation (14) is one instance of equation (1), with the state variable s = y, the shock

variable ε = ν, and the function f(s, ε) = u′
(
c(s|θ)

)
−βu′

(
c
(
g
(
s− c(s|θ)

)
η(ε)

∣∣∣θ)g′(s−
c(s|θ)

)
η(ε)

)
. It is easy to verify that the optimal behavior for the agent is to consume a

fixed fraction of her cash on hand y. More specifically, the optimal consumption policy

function is given by c∗(y) = (1− αβ)y.

To illustrate how the hyperparameters M and N in the loss function (7) affect the

accuracy of the approximation, I solve the model using the bias-corrected Monte Carlo

operator for several choices ofM and N . For the architecture of the ANN, I use a sigmoid

function for the final activation function, which ensures that the budget constraint is

respected. Hence, the ANN outputs a number between 0 and 1, which I interpret as the

fraction of income that is consumed, denoted by ϕ(y|θ). Thus, the consumption function

parameterized by an ANN has the following form c(y|θ) = ϕ(y|θ)y. I use a single node

14This model is a special case of the model developed by Brock and Mirman (1972), with full depre-

ciation of capital, which admits a closed-form solution. For textbook treatments of this model, refer to

Stokey (1989) or Ljungqvist and Sargent (2018).
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because we know that the solution is extremely simple: the ANN must learn to output

a constant.15

In terms of parametrization, I set the production parameter α = 0.4 and the discount

factor β = 0.96. Regarding the uncertainty parameters, I set µ = 0 and try two val-

ues for σν , 0.5 in the low-uncertainty parametrization and 1.5 in the high-uncertainty

parametrization. In both cases, I solve the model using the loss functions defined by

the bias-corrected Monte Carlo operator (7). For the optimization algorithm, I use the

stochastic gradient algorithm with a learning rate γ = 1.10−1. Training is stopped after

1000 steps of the stochastic gradient algorithm. Because the loss function defined by the

bias-corrected Monte Carlo operator (7) is stochastic, the final value of the ANN param-

eter θ may differ differ between two full training runs. To account for this uncertainty,

I train K different ANNs and report average values.

Key results are presented in Figure 1. The left panels show the standard deviation

of the loss function defined in equation (7) for several choices of M and N , holding

the hyperparameter T constant (T = 100). In the low-uncertainty parametrization

(σν = 0.5), the top-left panel shows that the standard deviation of the loss function is

much smaller for M = 100 and N = 2 than for M = 2 and N = 100. This lower standard

deviation for M = 100 results in more efficient training of the ANN, as illustrated in the

top-middle panel. With M = 100, the final value of the loss function is on average 30%

smaller and the dispersion of the loss function is approximately one order of magnitude

smaller. The top-right panel shows that differences in loss functions translate directly

into differences in the accuracy of the estimated policy function: the policy function

c(y|θ) estimated is much more accurate with M = 100 than with M = 2.

In the high-uncertainty parametrization (σν = 1.5), the situation is reversed. The

bottom-left panel shows that the standard deviation of the loss function is smaller for

M = 2 and N = 100 than for M = 100 and N = 2. The bottom-middle panel indicates

that the lower standard deviation forM = 2 results in more efficient training of the ANN.

The final value of the loss function is almost two orders of magnitudes smaller withM = 2

15Our choice of architecture implies that c(y|θ) = S(θ0+θ1y)y, with S the sigmoid function. Training

the ANN consists in finding θ0 and θ1 such that S(θ0 + θ1y) = (1 − αβ). One solution is θ1 = 0 and

θ0 = log(1−αβ
αβ ).
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than with M = 100. The bottom-right panel indicates that the policy function c(y|θ) is
one order of magnitude more accurate with M = 2 than with M = 100.

Results presented in this section confirm that choosing M and N in order to minimize

the mean squared integration error of LM
M,N(θ), which is equal to the variance of the loss

function, results in more efficient training of ANNs via the stochastic gradient descent

algorithm. They also illustrate the role that uncertainty has on the optimal choice of the

hyperparameters M and N . I find that the higher the uncertainty created by the shocks

ε, the larger the optimal value for N , as already suggested by proposition 4.
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Figure 1. Stochastic neoclassical growth model solved with the bc-MC

operator

(a) Low-uncertainty parametrization (σν = 0.5)

(b) High-uncertainty parametrization (σν = 1.5)

Notes. The left panels show the standard deviation of the loss function defined in equation (7) for several choices

of M and N , holding the hyperparameter T constant (T = 100). The middle panels plot the loss function against

the number of gradient descent steps. The right panels display the percentage error of the policy function, defined

as 100| c(y|θ)−c∗(y)
c∗(y) |, with c∗(y) = (1− αβ)y. For the middle and right panels, the solid line represents the average

value across K = 50 independently trained ANNs. The shaded areas are confidence intervals using 0.5 standard

deviations. The blue line is for M = 100 and N = 2, while the red line is for M = 2 and N = 100.
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4.2. Optimal consumption with a borrowing constraint. Consider an agent max-

imizing her inter-temporal discounted utility

max
{ct}∞t=0

E
[ ∞∑

t=0

βtu(ct) exp(δt)
]

(15)

subject to the constraints 0 ≤ ct ≤ wt + b, wt+1 = (wt − ct)r̄ exp(rt+1) + exp(yt+1) and

with w0 given. The variable ct is consumption, wt is cash on hand at the beginning of

the period, β ∈ (0, 1) is the subjective discount factor, r̄ ∈ (0, 1
β
) is the gross constant

interest rate. Total income yt is assumed to be stochastic, with yt = exp(pt + qt). The

four exogenous state variables are assumed to follow AR(1) processes:

pt+1 = ρppt + σpε
p
t+1

qt+1 = ρqqt + σqε
q
t+1

rt+1 = ρrrt + σrε
r
t+1

δt+1 = ρδδt + σδε
δ
t+1

(16)

where εi are i.i.d. standard Normal random variables. I set the value of the variance

parameters σi to 0.01 and the persistence parameters ρi to 0.9. I use a CRRA utility

function u(c) = c1−γ

1−γ
, with γ = 2. I use β = 0.9 and r̄ = 1.04. The parameter b is the

borrowing constraint. When b = 0, the agent cannot borrow; when b > 0 the agent can

borrow up to b.16

The solution to this dynamic programming problem is characterized by the following

Kuhn-Tucker conditions:

A ≥ 0, H ≥ 0, AH = 0

A ≡ w + b− c

H ≡ u′(c)− βr̄Eε

[
u′(c′) exp(δ′ + δ − r′)

] (17)

When the borrowing constraint is not binding (A > 0), the usual Euler condition

applies. When the borrowing constraint is binding (H > 0), the agent consumes all her

16Maliar, Maliar, and Winant (2021) solve this consumption-saving problem model with their all-in-

one expectation operator with b = 0.
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cash on hand w and borrows up to the limit b. For better performance, I use rescaled

versions of A and H: a ≡ 1− c−b
w
, h ≡ 1− βr̄Eε

[
u′(c′)
u′(c)

exp(δ′ + δ − r′)
]
.

Following Maliar, Maliar, and Winant (2021), I note that the Kuhn-Tucker conditions

can be smoothly approximated, making the problem differentiable. I use the Fischer-

Burmeister (FB) function, defined by Ψ(x, y) ≡ x + y −
√

x2 + y2. The FB function is

such that when it is equal to 0, the Kuhn-Tucker conditions are satisfied: Ψ(x, y) = 0 ⇔
x ≥ 0, y ≥ 0, xy = 0 (see for instance Chen, Chen, and Kanzow, 2000). As in Maliar,

Maliar, and Winant (2021), I note that the model can be solved by minimizing a loss

function of the form:

L(θ) = µ1 Es

[(
Eε

[
βr̄

u′(c(s′|θ))
u′(c(s|θ))

exp(δ′ + δ − r′)− h(s|θ)
])2]

+ µ2

(
Es

[
Ψ
(
1− c(s|θ)− b

w
, 1− h(s|θ)

)2]) (18)

where c(s|θ) and h(s|θ) are the output of an ANN parametrized by θ, while µ1 and

µ2 are subjective weights. The state is a 5-dimensional vector s =
(
w, p, q, r, δ

)
and the

shock is a 4-dimensional vector ε =
(
εp, εq, εr, εδ

)
.

The loss function (18) is a slight generalization of equation (2), because it has two

elements. However, I can still use the key idea of section 3. Namely, I use the MVUE

estimator for the first term involving nested expectations, while I use a simple sample

average for the second term:

LU
M,N(θ) = µ1

2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

f(sm, ϵ
i
m|θ)f(sm, ϵjm|θ)

+ µ2
1

M

M∑
m=1

Ψ
(
1− c(sm|θ)− b

wm

, 1− h(sm|θ)
)2

(19)

with f(s, ϵ|θ) ≡ βr̄ u′(c(s′|θ))
u′(c(s|θ)) exp(δ

′ + δ − r′)− h(s|θ).

For the architecture of the ANN, I use a single hidden layers of 32 nodes with ReLU

activation functions. The ANN outputs the share consumed out of cash on hand plus
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borrowing ϕ ≡ c(s|θ)
w+b

and the value h. I use the logistic function to enforce the budget

constraint (ϕ ∈ [0, 1]). I also use an exponential function to ensure that h > 0.

To measure accuracy, I use the following unit-less metric, denoted by Ec, which is

equal to 0 at the true solution c(s|θ) = c∗(s):

Ec ≡
∣∣∣1− 1

c(s|θ)
(u′)−1

[
max

(
βrEϵ

[
u′ (c(s′|θ)) exp (δ′ − δ + r′) , u′(w + b)

)] ∣∣∣ (20)

This accuracy metric is similar to the one discussed by Judd and Guu (1997) and Bar-

illas and Fernández-Villaverde (2007). It accounts for the fact that when the borrowing

constraint is binding, the agent consumes all her available cash on hand w and borrows

up to the limit b. When the borrowing constraint is not binding, consumption obeys

the usual Euler equation defined by H in equation (17). When Ec is equal to 0.01, on

average agents make a 1 dollar mistake for every dollar they invest.

As in section 4.1, I solve the model for two different parametrizations, to analyze how

the optimal choice of M and N is influenced by the underlying characteristics of the

model. In the first parametrization, I set b = 0, in which case the borrowing constraint

is binding. In the second parametrization, I set b = 1, in which case the borrowing

constraint does not bind, as explained below.

The consumption rules implied by two parametrizations are visible in Figure 2. For

the bc-MC methodology, I train the ANN for 10000 gradient descent steps (left panel) by

minimizing loss function (19) with the ADAM optimization algorithm using a learning

rate γ = 1.10−3. As a robustness check, I also solve the model using the Time Iteration

algorithm (right panel). A comparison of the right and left panels of Figure 2 indicates

that both methodologies yield similar consumption functions, with minimal differences

at around the kink point (w ≈ 1) when b = 0. Figure 2 also shows that when b = 0 the

budget constraint is binding, which is not the case when b = 1.

Key results are presented in Figure 3. In the binding parametrization (b = 0), the

variance of the loss function is minimized for the choice N = 2 and M = 100 (top-left

panel). This optimal choice of N and M leads to more efficient training (middle-top

panel), which results in a more accurate estimate of the policy function c(s|θ) (top-right
panel). Compared to a sub-optimal choice (N = 100, M = 2), the optimal choice reduces



22

the loss function by approximately 60% and the accuracy metric Ec by approximately

55%. In the non-binding parametrization (b = 1), the choice N = 2 and M = 100

is no longer optimal. The variance of the loss function is minimized for N = 20 and

M = 10 (bottom-left panel). This choice of hyperparameters leads to more efficient

training (bottom-middle panel) and a more accurate estimate policy function (bottom-

right panel).

Comparing the binding and non-binding parametrizations indicates that the optimal

choice of hyperparameters M and N is not only linked to the amount of randomness in

the model (section 4.1), but also to the curvature of the decision rule in the state space.

When b = 0, there exists a kink around w ≈ 0. To correctly capture the kink in the

consumption rule, a large number of draws in the state space is required (a large value

for M). For a given total number of function calls for each evaluation of the loss function

(captured by T ), this requires minimizing the number of independent shocks used in the

loss function (19) (a small value for N).

4.3. Large Scale Application. In this section, I compare the bc-MC operator to more

traditional techniques, especially when the dimension of the problem gets large. With

this objective in mind, I slightly modify the model from the previous section in order to

easily increase or decrease the dimension of the problem. As in the previous section, let

us consider an agent maximizing her inter-temporal discounted utility

max
{ct}∞t=0

E
[ ∞∑

t=0

βtu(ct) exp(δt)
]

subject to the same constraints as in section 4.2. In this section, I set the borrowing

constraint b = 0, which creates a kink in the decision rule. Total income yt is assumed to

be stochastic, with yt = exp(
∑l

i=1 pi,t). The model has 2 + l exogenous variables, which

follow AR(1) processes:

pi,t+1 = ρi,ppi,t + σi,pε
p
i,t+1, ∀i ∈ 1, 2, ..., l

rt+1 = ρrrt + σrε
r
t+1

δt+1 = ρδδt + σδε
δ
t+1

(21)

The dimension of the model depends on the number of variables appearing in stochastic

income yt. More specifically, the state vector s =
(
w, r, δ, p1, ..., pl

)
has ds ≡ 3 + l
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Figure 2. Consumption rule with borrowing constraint b = 0 or b = 1.0

Notes. This Figure shows the consumption rules when b = 0 (blue solid line) and b = 1 (green dotted line). The

left panel uses the bc-MC operator with N = 2 and M = 100. I train an ANN for 10000 gradient descent steps by

minimizing the loss function (19) with the ADAM optimization algorithm using a learning rate γ = 1.10−3. The

right panel uses the Time Iteration (TI) algorithm. For the TI algorithm, I use a dense grid with equally spaced

points. I use 10 points for w, and 3 for the other 4 state variables. To approximate expectations, I use a sparse

Gaussian quadrature of order 1, which leads to 9 evaluations of ε for each value of s.

elements and the shock vector ε =
(
εr, εδ, εp1, ..., ε

p
l

)
has dε ≡ 2 + l elements. I use the

same parameter values as in the previous section. For the l values of pi, I use ρi,p = 0.9

and a standard deviation σεpi
= 0.01.

I compare the performance of the bc-MC operator to the Time Iteration (TI) algo-

rithm. For the TI algorithm, I use a dense grid with equally spaced points. I use 10

points for w, and 3 for the other 2 + l state variables. Hence, the number of grid points

is equal to 10 × 22+l, which grows exponentially with l. I use linear interpolation to

approximate values between grid points. To approximate expectations, I use a sparse
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Figure 3. Model with a borrowing constraint solved with the bc-MC

operator

(a) b binding (b = 0)

(b) b non-binding (b = 1)

Notes. The left panels show the standard deviation of the loss function defined in equation (7) for several choices

of M and N , holding hyperparameter T constant (T = 100). The middle panels plot the loss function against the

number of gradient descent steps. The right panels display the accuracy metrics Ec, defined in equation (20). For

the middle and right panels, the solid line represents the average value across the K = 10 independently trained

ANNs. The shaded areas are confidence intervals using 0.5 standard deviations.
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Gaussian quadrature of order 1.17 I stop the TI algorithm when the distance between

the new guess for c(s) and the previous guess is less than 10−5.18

For the bc-MC operator, I use N = 2 and M = 100, which is the optimal choice

when b = 0 (see section 4.2). I use the same ANN architecture as in section 4.2 (a

single hidden layers of 32 nodes with ReLU activation functions). I also use the same

optimization algorithm and training procedure (10000 gradient descent steps with the

ADAM optimization algorithm using a learning rate γ = 1.10−3 to minimize the loss

function (19)).

Key results regarding the time-accuracy trade-off for the bc-MC operator are presented

in Figure 4. The left panel shows that the TI algorithm is much faster than the bc-MC

operator for low-dimensional models. However, the time required to solve the model

with TI using a dense grid grows exponentially with the dimension of the state vector

denoted ds. When ds is equal to 11, it takes more than 7 hours for the TI algorithm to

converge. The bc-MC operator is slower for low dimensional models, but the computing

time increases very slowly with ds. A crossing occurs at ds = 8, a value for which the

bc-MC operator is faster than the TI algorithm. This can be easily explained since the

number of grid points for the TI algorithm grows exponentially with ds, while the number

of draws for the bc-MC operator remains constant (M ×N). However, computing time

for the bc-MC operator does increase gradually because the dimension of each draw also

increases (M draws of a vector of size ds and N draws of a vector of size dε).

The middle panel of Figure 4 displays the Euler equation error Ec. For ds between 4

and 11, the TI algorithm is more accurate than the bc-MC operator. However, for both

approaches the Euler equation error Ec increases with ds. This reflects the fact that as

the dimension of the state variable increases the exact location of the kink point visible

in Figure 2 becomes harder to locate.19 We observe that the rate of increase in Ec is

higher for the TI algorithm than for the bc-MC operator, which indicates better scaling

abilities for the latter. The right panel of Figure 4 shows the expected value of the Euler

17I use a Smolyak sparse-grid construction (see Judd et al., 2014). To generate the sparse Gaussian

quadrature nodes and weights, I use the Python library Chaospy (see Feinberg and Langtangen, 2015).
18I compare the 10× 22+l grid points using the L-∞ distance.
19The volume of the d-dimensional sphere with radius 1 goes to 0 as the dimension d increases to

infinity.
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equation error Ec for a similar run time (100 seconds). A crossing occurs at ds = 8, at

which point the bc-MC operator performs better on a time-accuracy basis.

I also solve the model for l up to 100, which raises the dimension of state vector

s = (w, r, δ, p1, ..., pl) to ds = 103. At this scale, the TI algorithm on a dense grid is

untractable. To have a sense on how the TI algorithm would perform, I estimate the

elapsed computing time and the Euler error as a function of ds using data for ds ∈
4, 5, ..., 11.20 The left panel of Figure 5 indicates that it takes approximately 4 minutes

to solve the model with ds = 103 (right axis), while the TI algorithm on a dense grid

would require an unacceptable amount of computing time (left axis). The right panel

of Figure 5 shows that even with ds = 103, the bc-MC operator remains reasonably

accurate, with Ec only slightly above 0.01.

The bc-MC operator remains accurate, although the architecture of the underlying

ANN is unchanged as I scale up the dimensionality of the model (a single hidden layers

of 32 nodes). One could have expected that increasing the complexity of the ANN

architecture would become necessary by increasing the number of nodes or the number

of hidden layers. To explain this success, note that using constant values for ρi,p = ρ1,p =

0.9 and σεpi
= σεp1

= 0.01, the model can be solved with a 4-dimensional state vector

s⋆ = (w, r, δ, P ) and a 3-dimensional shock vector: ε =
(
εr, εδ, ζ

)
l∑

i=1

pi,t+1︸ ︷︷ ︸
Pt+1

= ρ1,p

l∑
i=1

pi,t︸ ︷︷ ︸
Pt

+σεp1

l∑
i=1

εpi,t+1︸ ︷︷ ︸
ζt+1

(22)

where ζ is a zero-mean Normal random variable of variance l. The good performance

of the ANN is likely explained by its ability to automatically detect this dimension re-

duction. Indeed, it has been shown that ANNs outperform principal component analysis

in dimension reduction tasks (Hinton and Salakhutdinov, 2006).21

20I use a log-linear model for the regression involving elapsed computing time, and a linear-linear

model for the regression involving Ec.
21See Maliar, Maliar, and Winant (2021) for a similar discussion on how ANNs are able to automat-

ically reduce the dimension of the state variable in a model with heterogeneous agents.
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Figure 4. bc-MC operator and Time Iteration: time-accuracy trade-off

Notes. The left panel shows the computing time (in seconds) required to solve the model with a borrowing constraint

(b = 0) as a function of the size of the state vector using the bc-MC operator (green dotted line) or the Time Iteration

(TI) algorithm (blue solid line). The middle panel displays the Euler equation error Ec calculated using (20), with

100 Monte Carlo draws to approximate expectations for each of 5000 random draws of the state vector. The right

panel shows the predicted Euler equation error Ec reached after 100 seconds of computing time (calculated as
Ec×time

100
). I train an ANN for 10000 gradient descent steps by minimizing loss function (19) with the ADAM

optimization algorithm using a learning rate γ = 1.10−3. For the TI algorithm, I use a dense grid with equally

spaced points. I use 10 points for w, and 3 for the other 2 + l state variables. To approximate expectations, I use a

sparse Gaussian quadrature of order 1.
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Figure 5. bc-MC operator and Time Iteration with large scale models

Notes. The left panel plots the computing time (in minutes) required to solve the model with a borrowing constraint

(b = 0) against the dimension of the state vector, using the bc-MC operator (green dotted line) or the Time Iteration

(TI) algorithm (blue solid line). The right panel displays the Euler equation error Ec calculated using (20), with

100 Monte Carlo draws to approximate expectations for each of 5000 random draws of the state vector. Because it

would be untractable otherwise, for the TI algorithm I use the predicted values from a linear regression using the

data points appearing in Figure 4 (a log-linear regression for elapsed computing time, and a linear-linear regression

for Ec).
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5. Conclusion

In this paper, I develop a general methodology to find global solutions to economic

models using Artificial Neural Networks (ANNs). This method does not involve lineariza-

tion around a steady-state and can scale to high-dimensional models, such as overlapping

generations models (Krueger and Kubler, 2006), models with partially insurable risk for

consumers (Krusell and Smith, 1998), New Keynesian models with heterogeneous house-

holds (Kaplan, Moll, and Violante, 2018), models with non-convex capital adjustment

costs for firms (Khan and Thomas, 2008), or multi-country models (Backus, Kehoe, and

Kydland, 1992).

I obtain tractability by using Monte Carlo integration techniques to approximate ex-

pectations, in combination with ANNs to approximate decision functions. I transform

two nested expectations into a single expectation using what I call a bias-corrected Monte

Carlo operator (bc-MC), which generalizes the all-in-one operator of Maliar, Maliar, and

Winant (2021). I study how to optimally set the hyperparameters defining the bc-MC

operator, considering that ANNs are trained by stochastic gradient descent or its vari-

ants. I illustrate the theoretical properties of the bc-MC operator numerically by solving

well-known economic models. I also show that the bc-MC operator can scale to high-

dimensional models, which is not the case for other popular global algorithms relying on

dense grids to explore the the state space, such as the Time Iteration algorithm.

In this paper, I rely on Monte Carlo integration to approximate expectations. However,

one possible alternative would be to use sparse quadrature nodes. Using fixed grid

points as integration nodes reduces the variance of the loss function, which leads to

faster training with the stochastic gradient descent algorithm. I also note that there

might be promising ways to combine methods using adaptive sparse grids (see Brumm

and Scheidegger, 2017) and machine learning techniques. Using an adaptive sparse grid

to guide state-space sampling near kinks in the decision functions might further reduce

the variance of the loss function, in the spirit of the importance sampling algorithm

(Katharopoulos and Fleuret, 2018). I leave these avenues for further research.
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Fernández-Villaverde, Jesús, Samuel Hurtado, and Galo Nuno (2019). Financial frictions

and the wealth distribution. Tech. rep. National Bureau of Economic Research.
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Appendix A. Case with several equations

In general, an economic model is characterized by a system of J stochastic functional

equations:

Eε

(
fj(s, ϵ)

)
= 0 for s ∈ S and j ∈ 1, ..., J (23)

where s is vector representing values known today and ϵ a vector of i.i.d. shock

occurring after decisions are made. These J equations can be Euler or Bellman equa-

tions. They can also be budget constraints, or other types of constraints introduced in a

smooth and differentiable way. A parametric approximation of the solution f(s, ϵ|θ) =
(f1(s, ϵ|θ), ..., fJ(s, ϵ|θ)) can be obtained by minimizing a loss function that takes into

account a weighted sum of the j equations:

L(θ) =
J∑

j=1

ϑj Es

[
Eε

(
fj(s, ϵ|θ)

)2]
(24)

where ϑj is a subjective weight associated to each equation characterizing the model.

To approximate the expectations, one may use Monte Carlo integration separately for

the two integrals:

LM
M,N(θ) =

J∑
j=1

ϑj

( 1

M

M∑
m=1

{[ 1

N

N∑
n=1

fj(sm, ϵn|θ)
]2})

(25)

The bias-corrected Monte Carlo operator writes:

LU
M,N(θ) =

J∑
j=1

ϑj

( 1

M

M∑
m=1

{[ 1

N

N∑
n=1

fj(sm, ϵn|θ)
]2

−
S2
j,m,n

N

})
(26)

Appendix B. Proof of proposition 2

Let us consider a random variable x. By definition, the sample variance S2
n is given by

S2
n ≡ 1

N−1

∑N
i=1(xi− x̄), with x̄ the sample mean. Expanding the square and rearranging

yields the following alternative expression for the sample mean:

S2
n =

1

N − 1

N∑
i=1

x2
i −

N

N − 1
x̄2 (27)

Using equation (27), one gets a value for x̄2 − S2
n

N
involving the product xixj:
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x̄2 − S2
n

N
=

N

N − 1
x̄2 − N

N(N − 1)
x̄2

=
1

N(N − 1)

[( N∑
i=1

xi

)2

−
N∑
i=1

x2
i

]
=

1

N(N − 1)

[ N∑
i=1

x2
i + 2

N∑
1≤i<j

xixj −
N∑
i=1

x2
i

]

=
2

N(N − 1)

N∑
1≤i<j

xixj

=
1(
N
2

) N∑
1≤i<j

xixj

(28)

where
(
N
2

)
is equal to the number of unique pairs that can be formed from N ele-

ments. Using equation (28) within (6), and using the notations xi ≡ f(sm, ϵ
i
m) and

xj ≡ f(sm, ϵ
j
m) yields:

LU
M,N(θ) =

2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

f(sm, ϵ
i
m|θ)f(sm, ϵjm|θ) (29)

where ϵi and ϵj are i.i.d. shocks with the same distribution as ϵ.

When N = 2, equation (29) simplifies to:

LU
M,2(θ) =

1

M

M∑
m=1

f(sm, ϵ
1
m|θ)f(sm, ϵ2m|θ) (30)

Appendix C. Proof of proposition 3

Let eM,N(f |θ) denote the integration error, defined as:

eM,N(f |θ) ≡ L(θ)− LU
M,N(θ)

= Es

[
Eε

(
f(s, ϵ|θ)

)2]
− 1

M

M∑
m=1

2

N(N − 1)

N∑
1≤i<j

f(sm, ϵ
i
m|θ)f(sm, ϵjm|θ)

(31)

First, observe that LU
M,N(θ) is an unbiased estimator of L(θ). By linearity of the expec-

tation operator and because ϵim and ϵjm are independent and have the same distribution,

one gets:
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Eε

[ 2

N(N − 1)

N∑
1≤i<j

f(sm, ϵ
i
m|θ)f(sm, ϵjm|θ)

]
=

2

N(N − 1)

N∑
1≤i<j

Eε

[
f(sm, ϵ

i
m|θ)f(sm, ϵjm|θ)

]

=
2

N(N − 1)

N∑
1≤i<j

Eεi

[
f(sm, ϵ

i
m|θ)

]
Eεj

[
f(sm, ϵ

j
m|θ)

]

=
2

N(N − 1)

N∑
1≤i<j

Eε

(
f(sm, ϵ|θ)

)2

=
2

N(N − 1)

N(N − 1)

2
Eε

(
f(sm, ϵ|θ)

)2

= Eε

(
f(sm, ϵ|θ)

)2

Again, by linearity of the expectation operator:

Es

[ 1

M

M∑
m=1

Eε

(
f(sm, ϵ|θ)

)2]
= Es

[
Eε

(
f(s, ϵ|θ)

)2]
To conclude the proof, I use the fact that the mean squared error of an estimator

is equal to the sum of the square if its bias plus its variance. Because LU
M,N(θ) is an

unbiased estimator of L(θ), its mean squared error is equal to its the variance:

E
[
eM,N(f |θ)2

]
= Var

[
LU

M,N(θ)
]

Appendix D. Proof of proposition 4

D.1. Proof of proposition 4.1. I first prove the first point of proposition 4. I start

with the expression of the loss function from proposition 2:

LU
M,N(θ) =

2

MN(N − 1)

M∑
m=1

N∑
1≤i<j

f(sm, ϵ
i
m|θ)f(sm, ϵjm|θ)

For the outer sum, the m draws of the state variable s are independent from each

other. Hence, the variance of the sum if equal to the sum of variances:

Var
(
LU

M,N(θ)
)
=

( 2

MN(N − 1)

)2
M∑

m=1

Var
( N∑

1≤i<j

f(sm, ϵ
i
m|θ)f(sm, ϵjm|θ)

)

=
( 2

MN(N − 1)

)2

M Var
( N∑

1≤i<j

f(sm, ϵ
i
m|θ)f(sm, ϵjm|θ)

)
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For the inner sum, the random variables (sm, ϵ
i
m) and (sm, ϵ

j
m) share the same value of

the state sm, so they are in general correlated. The variance of the sum N of correlated

random variables is equal to the sum of variances, plus a term involving the sum of

covariances. The inner sum has N(N−1)
2

elements. The number of unique pairs that can

assembled from N(N−1)
2

elements is equal to:(N(N−1)
2

2

)
=

1

2

(N(N − 1)

2
− 1

)(N(N − 1)

2

)
There a two types of covariance terms that can appear when calculating the variance of∑N
1≤i<j f(sm, ϵ

i
m|θ)f(sm, ϵjm|θ). The first type contains the same shock appearing twice,

for instance:

Cov(f(sm, ϵ
1
m|θ)f(sm, ϵ2m|θ), f(sm, ϵ1m|θ)f(sm, ϵ3m|θ))

There areN
(
N−1
2

)
= N(N−1)

2
(N−2) of such elements. Indeed, there areN possible ways of

selecting an index i among N elements. Then, there are
(
N−1
2

)
possible ways of selecting

two other indices among the remaining N − 1 available indices. These covariance terms

have equal value, because ϵim and ϵjm have the same distribution and are independent

from each other (which allows us to select three indices i, j, k = 1, 2, 3).

The second type of covariance term contains four different shocks, for instance:

Cov(f(sm, ϵ
1
m|θ)f(sm, ϵ2m|θ), f(sm, ϵ3m|θ)f(sm, ϵ4m|θ))

The number of covariance terms of this second type is given by
(N(N−1)

2
2

)
−N(N−1)

2
(N−2) =

N(N−1)
2

(
N(N−1)

4
−N + 3/2

)
. Once again, because the shocks are independent from each

other and have the same distribution, these covariance terms have the same value. Thus,

we can select four indices i, j, k, l = 1, 2, 3, 4 without loss of generality.

Taking into account the number of variance and covariance terms, the variance of the

inner sum can be written as:

Var
( N∑

1≤i<j

f(sm, ϵim|θ)f(sm, ϵjm|θ)
)
=

N(N − 1)

2

[
Var

(
f(sm, ϵ1m|θ)f(sm, ϵ2m|θ)

)
+2(N − 2)Cov

(
f(sm, ϵ1m|θ)f(sm, ϵ2m|θ), f(sm, ϵ1m|θ)f(sm, ϵ3m|θ)

)
+2

(N(N − 1)

4
−N + 3/2

)
×

Cov
(
f(sm, ϵ1m|θ)f(sm, ϵ2m|θ), f(sm, ϵ3m|θ)f(sm, ϵ4m|θ)

)]
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Using the previous expression, as well as the definition of T ≡ MN
2
, one gets the

expression reported in proposition 4:

Var
(
LU
M,N (θ)

)
=

1

T (N − 1)

[
Var

(
f(sm, ϵ1m|θ)f(sm, ϵ2m|θ)

)
+

+ 2(N − 2)Cov
(
f(sm, ϵ1m|θ)f(sm, ϵ2m|θ), f(sm, ϵ1m|θ)f(sm, ϵ3m|θ)

)
+ 2

(N(N − 1)

4
−N + 3/2

)
Cov

(
f(sm, ϵ1m|θ)f(sm, ϵ2m|θ), f(sm, ϵ3m|θ)f(sm, ϵ4m|θ)

)]
D.2. Proof of proposition 4.2. For the special case in which the state variable s does

not contribute to the variance of the loss function (f(sm, εm|θ) = f(εm|θ), ∀s ∈ S), I

rewrite the covariance term as:

Cov(f(sm, ε1m|θ)f(sm, ε2m|θ), f(sm, ε1m|θ)f(sm, ε3m|θ)) = E
(
f(sm, ε1m|θ)2f(sm, ε2m|θ)f(sm, ε3m|θ)

)
− E

(
f(sm, ε1m|θ)f(sm, ε2m|θ)

)
E
(
f(sm, ε1m|θ)f(sm, ε3m|θ)

)
= E

(
f(sm, ε1m|θ)

)2[E (
f(sm, ε1m|θ)2

)
− E

(
f(sm, ε1m|θ)

)2]
= E

(
f(sm, ε1m|θ)

)2
Var(f(sm, ε1m|θ))

The first line uses the equality Cov(X, Y ) = E[XY ]−E[X]E[Y ]. To go from the first

to the second line, I note that when f(sm, εm|θ) = f(εm|θ) for all s ∈ S, the only source

of randomness in f(sm, ε
i
m|θ) comes from εim. By assumption εim and εjm are i.i.d. for

i ̸= j. I then use the fact that the expectation of the product of independent variables is

equal to the product of expectations. These expectation terms have equal value, because

the shocks all follow the same distribution, which allows us to select an index i = 1. The

third line comes from recognizing the equality Var(X) = E[X2]− E[X]2.

If two variables X and Y are independent, the variance of their product is given by:

Var(XY ) = E(X)2Var(Y ) + E(Y )2VarX +Var(X)Var(Y )

Using the formula of the variance of the product of independent random variables for

Var(f(sm, ε
1
m|θ)f(sm, ε2m|θ)), one gets:

Var(f(sm, ε
1
m|θ)f(sm, ε2m|θ)) = Var(f(sm, ε

1
m|θ))2 + 2E

(
f(sm, ε

1
m|θ)

)2
Var(f(sm, ε

1
m|θ))

Using once again the assumption that εim and εjm are i.i.d. for i ̸= j, it is easy to see

that the covariance terms in which four different shocks appear are equal to zero:
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Cov(f(sm, ε1m|θ)f(sm, ε2m|θ), f(sm, ε3m|θ)f(sm, ε4m|θ)) = E
(
f(sm, ε1m|θ)f(sm, ε2m|θ)f(sm, ε3mf(sm, ε4m|θ)

)
− E

(
f(sm, ε1m|θ)f(sm, ε2m|θ)

)
E
(
f(sm, ε3m|θ)f(sm, ε4m|θ)

)
= E

(
f(sm, ε1m|θ)

)4 − E
(
f(sm, ε1m|θ)

)4
= 0

Substituting these formulas within the expression for the variance of the loss and

simplifying, one gets the result reported in the second point of proposition 4:

Var(LU
M,N(θ)) =

1

T (N − 1)
Var

(
f(sm, ε

1
m|θ)

)2
+

2

T
E
(
f(sm, ε

1
m|θ)

)2
Var(f(sm, ε

1
m|θ))

D.3. Proof of proposition 4.3.

For the special case in which the shock variable ε does not contribute to the variance of

the loss function (f(sm, εm|θ) = f(sm|θ), ∀εm ∈ E), the covariance terms are all equal:

Cov
(
f(sm, ϵ

1
m|θ)f(sm, ϵ2m|θ), f(sm, ϵ1m|θ)f(sm, ϵ3m|θ)

)
= Cov

(
f(sm, ϵ

1
m|θ)f(sm, ϵ2m|θ), f(sm, ϵ3m|θ)f(sm, ϵ4m|θ)

)
= Cov

(
f(sm, ϵ

1
m|θ)2, f(sm, ϵ1m|θ)2

)
= Var

(
f(sm, ϵ

1
m|θ)2

)
We also have:

Var
(
f(sm, ϵ

1
m|θ)f(sm, ϵ2m|θ)

)
= Var

(
f(sm, ϵ

1
m|θ)2

)
Simplifying and using the definition of T = MN

2
, we get the third point of proposition 4:

Var(LU
M,N(θ)) =

1

M

[
Var

(
f(sm, ε

1
m|θ)2)

]
Appendix E. Computational details

Numerical exercises are realized on the same computer (Intel(R) Core(TM) i7-8850H

CPU @ 2.60GHz), which does not have a GPU. For the code, I use Python version 3.8.10.

I code the bc-MC operator using Pytorch 1.13.1. For numerical integration in the Time

Iteration algorithm, I use Chaospy.
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