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Abstract. This paper establishes that frictionless, rational-expectations models driven by

specific ARMA(2,1) forcing processes are consistent with equilibrium asset-price dynamics

featuring momentum. To reach this result, we first document that AR(2) models ade-

quately capture the cyclical dynamics found in U.S. house prices, in particular the strong

positive first-order autocorrelation in their first difference. Then, we show analytically that

ARMA(2,1) exogenous drivers give rise to equilibrium AR(2) asset-price dynamics in a sim-

ple present-value model. Our pen-and-paper approach yields a straightforward economic

interpretation of the results, emphasizing the contribution of anticipated shocks to generat-

ing asset-price momentum. We document the empirical relevance of our theoretical results

by estimating the model from house-price data. Our findings suggest that house-price mo-

mentum does not necessarily signal irrational exuberance or strong frictions in housing

markets.
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Résumé Non Technique

La dynamique des prix immobiliers est souvent caractérisée par un fort degré de momen-

tum, c’est-à-dire que les périodes de hausse (respectivement, de baisse) des prix immobiliers

tendent à s’étaler sur plusieurs trimestres consécutifs. Cette régularité est bien établie pour

les États-Unis par l’étude fondatrice de Case et Shiller (1989). Formellement, la variation

des prix immobiliers à chaque trimestre est positivement corrélée à la variation observée le

trimestre précédent. Le même phénomène caractérise l’évolution des prix immobiliers dans

les pays européens.

Cette propriété retient l’attention des économistes dans la mesure où elle semble difficile-

ment explicable d’un point de vue théorique. En effet, les forces d’équilibre présentes dans

la plupart des modèles économiques tendent à éliminer toute possibilité de momentum dans

le prix d’actifs tels que l’immobilier. Dès lors, l’interprétation communément admise du

phénomène est qu’il reflète la présence de frictions importantes dans le marché immobilier.

Plusieurs auteurs soutiennent notamment que le momentum pourrait signaler une évolution

des prix immobiliers partiellement décorrellée des fondamentaux économiques, tels que les

niveaux de l’offre, de la demande et des taux d’intérêt.

Dans cet article, nous démontrons que la présence de momentum dans le prix des ac-

tifs est en fait compatible avec un environnement économique sans friction, dans lequel

les prix reflètent uniquement les fondamentaux économiques. Nous établissons ce résultat

dans un cadre délibérément simple, qui nous permet d’identifier le mécanisme à l’origine de

l’émergence du momentum : la présence de chocs anticipés sur le prix des actifs. De tels

chocs apparaissent lorsque les agents économiques, tels que les ménages et les investisseurs,

réagissent immédiatement à des évènements dont ils savent qu’ils affecteront la valeur des

actifs dans le futur. Dans le cas du marché immobilier, l’on peut penser à des anticipa-

tions relatives au nombre de logements actuellement en construction et qui seront mis sur le

marché dans le futur (offre future), à la croissance future de la population (demande future),

ou encore à la propagation lente des chocs de politique monétaire dans l’économie (qui peut

affecter à la fois l’offre et la demande).

Notre conclusion principale est donc que la présence de momentum dans les prix immo-

biliers est donc insuffisante pour indiquer un fort degré de frictions dans le marché immo-

bilier. Elle ne permet pas non plus d’affirmer que les prix immobiliers sont décorrélés des

fondamentaux économiques. Clarifier la ou les causes du momentum des prix immobiliers

reste donc une question importante pour la recherche future, dans la mesure où des mesures

de politique macro-prudentielle ou monétaire auront des effets différents selon les frictions

auxquelles font face les agents économiques.
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1. Introduction

Quarterly changes in U.S. real house prices present strong positive autocorrelation in

the short run. This well-known empirical fact, called momentum, has been highlighted in

a number of studies, including Case and Shiller (1989), Glaeser, Gyourko, Morales, and

Nathanson (2014), Head, Lloyd-Ellis, and Sun (2014), and Guren (2018).

The consensus in the literature is that persistence in house-price growth is not consistent

with a frictionless environment under rational expectations. For instance, Glaeser, Gyourko,

Morales, and Nathanson (2014) report that “no reasonable parameter set” can generate

short-run momentum in the frictionless, rational-expectations model they consider. As noted

by Guren (2018), models with forward-looking agents embed strong arbitrage forces that tend

to eliminate momentum, as optimizing traders react to expected price movements by adjust-

ing supply and demand. Hence, house-price momentum is seen as revealing deep frictions in

the housing market and existing explanations for this phenomenon rely on a variety of devia-

tions from the frictionless framework, including non-rational expectations (Gelain, Lansing,

and Mendicino, 2013; Gelain and Lansing, 2014; Gelain, Lansing, and Natvik, 2018; Glaeser

and Nathanson, 2017; Pancrazi and Pietrunti, 2019), search frictions (Head, Lloyd-Ellis, and

Sun, 2014), learning (Anenberg, 2016), belief heterogeneity (Burnside, Eichenbaum, and Re-

belo, 2016), and strategic complementarities (Guren, 2018).1 However, the mechanisms at

play are not directly observable and substantial uncertainty remains about the causes of

positive serial correlation in U.S. house-price growth.

In this paper, we demonstrate that, contrary to the common wisdom, asset-price momen-

tum can be consistent with frictionless, rational-expectations models. We rely on a simple

and transparent analytical approach to identify the central ingredient of our results: antici-

pated shocks (also known as news shocks) that directly affect the valuation of housing. Our

findings highlight yet another difficulty in interpreting house-price momentum: the need to

distinguish endogenous drivers (exuberance, frictions) from exogenous drivers (anticipated

shocks) of house-price movements.

We proceed in three steps. Our first step is to look for a parsimonious representation of the

cyclical behavior in house prices. We find that that simple autoregressive (AR) processes of

order 2 adequately reproduce the key properties of detrended U.S. house prices, in particular

momentum. This finding holds for a variety of detrending approaches. We complement these

empirical results by analyzing the properties of AR(2) models that can generate momentum,

identifying the relevant parameter configuration: the autoregressive parameters must lie in

the bottom-right corner of the stability triangle associated with the AR(2) process, requiring

a large and positive coefficient on the first lag and a negative coefficient on the second lag.

1On the other hand, Moura and Pierrard (2022) show that the frictions commonly embedded in quantita-

tive DSGE models, including consumption habits, investment adjustment costs, and collateral constraints,

do not generate positive momentum.
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Our second step is to establish conditions under which equilibrium AR(2) dynamics for

asset prices arise in frictionless environments under rational expectations. We consider the

simplest possible model: rational, risk-neutral investors evaluate an asset based on an exoge-

nous stream of dividends. The fundamental solution equates, at each period, the asset price

to the expected discounted sum of current and future dividends. Variations of this present-

value approach appear in most modern macroeconomic models. The simplicity of the setup

makes it possible to obtain analytical results. In particular, we show that equilibrium asset

prices have an AR(2) representation in this economy if and only if dividends follow a specific

autoregressive moving average (ARMA) process of order (2,1).

Then, we invoke our theoretical results about AR(2) dynamics to characterize parameter

restrictions ensuring that equilibrium asset prices display momentum. This allows us to ob-

tain three main results. First, we find parameter configurations under which the frictionless

present-value model generates positive autocorrelation in asset-price growth. This is an im-

portant finding because it calls into question the common view that house-price momentum

provides face-value evidence of strong frictions in real-estate markets.

Second, we identify the key economic ingredient the frictionless model requires to generate

momentum: the stochastic process for dividends must feature anticipated shocks. That is,

agents must receive advance information about future dividends. This particular information

structure is encapsulated by the moving average (MA) component of the ARMA(2,1) divi-

dend process, since rational agents understand that a shock hitting the economy today will

also affect dividends tomorrow. We prove that, when investors are patient enough, the MA

component of dividends must be non-fundamental for equilibrium asset-price momentum to

arise. In this case, the MA coefficient is larger than one in absolute value, so that a shock

hitting the economy brings more information about future dividend movements than about

current developments, a typical pattern of news shocks.

The idea that changes in expectations about future economic conditions can be impor-

tant drivers of business cycles has a venerable tradition; see Beaudry and Portier (2004,

2006, 2014), Jaimovich and Rebelo (2009), and Schmitt-Grohe and Uribe (2012) for recent

contributions. It has also received attention in the context of the housing market. On the

empirical side, Soo (2018) shows that expectations about future house prices forecast up to

70 percent of the variation in house-price growth at the two-year horizon.2 On the theoretical

side, Kanik and Xiao (2014) introduce news shocks in the stochastic process driving housing

utility in a DSGE model à la Iacoviello and Neri (2010). They show that positive news

shocks lead to faster housing accumulation, which triggers an aggregate economic boom by

2We should also mention Lambertini, Mendicino, and Punzi (2013a), who use a structural vector autore-

gression to show that positive news about U.S. business conditions triggers a rise in house prices, and Gomes

and Mendicino (2015), who find that anticipated shocks affecting productivity, markups, and monetary pol-

icy explain a substantial share of house-price movements in an estimated DSGE model. These studies are

less directly related to ours because they focus on news shocks not directly related to housing demand.
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relaxing collateral constraints. If the positive news fails to materialize, a general downturn

follows as house prices fall and depress demand.3 Our approach builds upon these contri-

butions, retaining the key idea that anticipated shocks matter for the housing market and

highlighting their potential importance for house-price momentum.

Third, we show that, in the parameter space associated with asset-price momentum, the

ARMA(2,1) dividend can be arbitrarily close to a standard AR(1) process, in the sense

that an econometrician would not be able to distinguish the two processes given a finite

sample of dividend data. It follows that our momentum-generating mechanism does not

require peculiar exogenous dynamics. However, the economic implications of AR(1) and

ARMA(2,1) dividends are very different, as the latter generate positive serial correlation in

equilibrium asset-price growth while the former do not. We corroborate these observations

in our empirical analysis.

Indeed, our third and last step is to document the empirical relevance of our approach.

We estimate the asset-pricing model from observations on cyclical house prices, allowing for

AR(1), AR(2), and ARMA(2,1) dividends. Gelain and Lansing (2014) and Gelain, Lansing,

and Natvik (2018) estimate similar asset-pricing models from house-price data, focusing

on deviations from rational expectations instead of on news shocks. We find empirical

support for all our results: the ARMA(2,1) setup is largely favored by the data over the

alternatives; it is the only one able to reproduce the strong positive autocorrelation of house-

price changes; the estimated parameters are in the subspace our theoretical analysis identified

as relevant; and the estimated ARMA(2,1) dividend process is very close to a simpler AR(1)

representation. Strikingly, the estimated model implies that equilibrium house prices lead

realized dividends by more than two years, which signals substantial amplification since news

shocks arrive only one quarter in advance when dividends have ARMA(2,1) dynamics.

We organize the paper as follows. Section 2 presents the evaluation of simple time-series

models of cyclical house prices and highlights the good empirical performance of AR(2)

models, especially in terms of momentum. Section 3 provides the theoretical analysis of the

frictionless asset pricing model and contains our main results about the relationship between

asset-price momentum and anticipated shocks. Finally, Section 4 describes our empirical

application, based on a structural estimation of the model, and Section 5 concludes.

2. U.S. House Prices and the AR(2) Model

In this section, we fit various time-series models to U.S. house prices. We find that a

parsimonious AR(2) process accurately reproduces the main cyclical properties of the data,

3See also Lambertini, Mendicino, and Punzi (2013b) for an analysis of the welfare benefits associated with

policies leaning against news-driven cycles in a Iacoviello-type model. Again, the main difference between

their study and ours is the fact that they do not include anticipated shocks directly driving housing demand.
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Figure 1. Log real U.S. house prices

Notes. Panel A shows the logarithm of real U.S. house prices. Panel B shows the cyclical components

extracted by various methods: the dashed, solid, and dash-dotted black lines correspond respectively

to linear detrending, quadratic detrending, and band-pass detrending; the solid blue line corresponds

to HP detrending. Shaded areas represent NBER recessions.

including momentum. We explain this result by highlighting some persistence properties of

AR(2) models.

2.1. Data. We measure house prices using the quarterly S&P CoreLogic Case/Shiller nomi-

nal price index for U.S. homes, available from Robert Shiller’s webpage (http://www.econ.

yale.edu/~shiller/data/Fig3-1.xls). We convert the series to real terms using the price

index for nondurable consumption and services.4 The sample runs from 1975Q1 to 2019Q4.

We focus on cyclical dynamics. Standard unit-root tests suggest that log house prices are

stationary around a deterministic time trend, so we remove either a linear or a quadratic

trend from the series.5 For robustness, we also estimate the cyclical component using filtering

methods: a band-pass filter isolating cycles with a duration between 2 and 120 quarters,

thus keeping both the short-term and medium-term fluctuations that Drehmann, Borio, and

Tsatsaronis (2012) find in house prices, and the standard Hodrick-Prescott (HP) filter with

smoothing parameter 1,600.

Figure 1 presents the data. Panel A shows real house prices in log-levels, while Panel B

shows the four estimated cyclical components. Visually, it is clear that removing a linear or a

quadratic time trend and using the band-pass filter yield very similar cycles (in black): pair-

wise correlations between these three estimates are above 0.98. These cyclical components

are volatile (standard deviation of about 10%) and persistent (first-order autocorrelation of

4Our results are robust to deflating nominal house prices by the GDP deflator instead.
5Augmented Dickey-Fuller tests reject the null hypothesis of a unit root in log real house prices at con-

ventional levels of significance against the alternative of trend stationarity. See Zhang, de Jong, and Haurin

(2016) for more evidence that real U.S. house prices are trend stationary.
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Table 1. Estimation results for autoregressive models of U.S. house prices

Estimates Evaluation

Model φ1 φ2 φ3 φ3 BIC HQ ρ∆y(1)

Quadratic detrending

AR(1) 0.99 — — — −8.61 −8.63 −0.00

AR(2) 1.87 −0.88 — — −10.09 −10.12 0.87

AR(3) 1.77 −0.68 −0.11 — −10.07 −10.12 0.87

AR(4) 1.74 −0.87 0.41 −0.29 −10.14 −10.19 0.87

HP detrending

AR(1) 0.96 — — — −9.65 −9.67 −0.02

AR(2) 1.64 −0.70 — — −10.28 −10.32 0.67

AR(3) 1.58 −0.56 −0.08 — −10.26 −10.31 0.66

AR(4) 1.55 −0.74 0.44 −0.33 −10.35 −10.40 0.66

Notes. The estimated processes are of the form yt = φ0+
∑

j φjyt−j+ut, where yt is log real house prices

and ut is a residual. The estimation sample is 1975Q1-2019Q4. BIC and HQ refer to the Bayesian and

Hannan-Quinn information criteria. ρ∆y(1) is the first-order autocorrelation of the first difference of yt

implied by the estimated AR processes, i.e. the theoretical momentum of yt. The empirical estimate

of ρ∆y(1) is 0.87 for quadratically-detrended house prices and 0.68 for HP-detrended house prices.

0.99). They tend to rise during expansions and fall during recessions. The HP filter esti-

mates a different cyclical component (in blue), less persistent (autocorrelation of 0.97) and

especially less volatile (standard deviation of 3%). This is because the HP filter attributes

more of the observed medium-term fluctuations in house prices to the trend, while the other

techniques attribute these to the cycle.

Crucially, all estimated cyclical components feature strong momentum: the first-order

autocorrelation of their first differences are equal to 0.87 for the linear, quadratic, and band-

pass cycles, and 0.68 for the HP cycle. Thus, all detrending methods imply that the serial

correlation of cyclical changes in house prices is positive in the short run. This property

also holds for undetrended house prices, whose first difference also presents a first-order

autocorrelation of 0.87.

2.2. Time-series models of house prices. We now look for a time-series model that

provides a parsimonious yet reasonable representation of cyclical house-price dynamics. We

fit AR processes to the detrended series and evaluate their fit using two consistent information

criteria, the Schwarz Bayesian Information Criterion (BIC) and the Hannan-Quinn (HQ)

criterion. We allow for a maximum lag order of 4. Table 1 presents the results. In the

interest of space, we focus on the cyclical components estimated by the quadratic time trend

and the HP filter; results for the linear time trend and the band-pass filter are very similar

to the former case.



8

Table 1 shows that the AR(4) process minimizes the two information criteria, for both

quadratically- and HP-detrended series. Therefore, on this basis it is the best model within

the subset we consider. However, we see that the AR(2) process also provides a good

representation of the cyclical behavior of U.S. house prices: it dominates the AR(1) and

AR(3) alternatives, and it reproduces the degree of momentum found in the data as well as

the richer AR(4) model.

The ability to generate a strong autocorrelation for house-prices changes seems to be

the discriminating factor for model evaluation. The largest drop in information criteria

occurs when moving from the AR(1) specification, which fails to reproduce the positive

autocorrelation found in the data, to the AR(2) specification, which succeeds. Allowing for

extra lags does not improve the momentum statistic and results in only marginal changes

in information criteria. In fact, while the BIC and Hannan-Quinn criterion both heavily

penalize the AR(1) model, they imply that autoregressive models with 2 to 4 lags fit the data

about equally well. We conclude that AR(2) dynamics provide a reasonable representation

of detrended house prices.

As further evidence, Figure 2 compares some empirical statistics estimated from the data

with the counterparts implied by the estimated AR(2) processes. We focus on the autocorre-

lation function (ACF), the partial autocorrelation function (PACF), and the ACF of the first

difference (FD-ACF). Each panel shows the sample autocorrelations estimated from the data

in black, together with heteroskedasticity-robust confidence intervals. For both detrending

approaches, we observe strong persistence in house prices, as well as significant momentum.

The blue lines show the theoretical values implied by the AR(2) model. The fit is very

good: in spite of its simplicity, the model reproduces the slow and concave decay in autocor-

relations, the high partial autocorrelations at lags 1 and 2, the sharp decline found starting

lag 3 on, and the slow decay in autocorrelations for the first difference of the data. While

richer AR(3) and AR(4) processes may be better at reproducing the properties of the series

at higher lag orders, we are confident from this analysis that the AR(2) process provides a

sensible representation of the short-run behavior of U.S. house prices.

Another notable point is that the estimated AR(2) models present complex roots, suggest-

ing the presence of an oscillatory component. For instance, the estimated roots are equal to

0.93± 0.10i for quadratically-detrended house prices, and to 0.82± 0.16i for HP-detrended

house prices. The estimated AR(3) and AR(4) models also present complex roots, suggesting

that cyclical U.S. house prices display oscillatory patterns.

2.3. Key properties of AR(2) models. To shed light on these empirical findings, we

review some properties of stationary AR(2) processes and establish new results related to

momentum.6 We will build upon this analysis in the next section.

6Hamilton (1994) and Box, Jenkins, Reinsel, and Ljung (2015), among others, provide treatments of

AR(2) models.



9

Figure 2. Persistence properties of detrended house prices

Notes. For both quadratically- and HP-detrended log real house prices, the left-hand panel shows the

autocorrelation function (ACF), the middle panel shows the partial autocorrelation function (PACF),

and the right-hand panel shows the autocorrelation function of the first difference (FD-ACF). Dark bars

represent sample statistics and shaded areas show heteroskedasticity-robust 95% confidence intervals

centered around zero. Blue lines show the values implied by the AR(2) processes estimated from the

data. The sample is 1975Q1-2019Q4.

Consider the following AR(2) representation for an economic variable yt:

yt = φ1yt−1 + φ2yt−2 + εt, (1)

where εt is a white-noise innovation with zero mean and variance σ2 > 0. We omit a constant

term without loss of generality. As is well known, the dynamic properties of yt depend on

the roots λ1 and λ2 of the characteristic polynomial associated with equation (1),

(1− φ1B − φ2B
2) = (1− λ1B)(1− λ2B),

where B denotes the backshift operator, i.e. Byt = yt−1. The roots of this polynomial are

(λ1, λ2) =
φ1 ±

√
φ2

1 + 4φ2

2
. (2)

They are real if φ2
1 + 4φ2 ≥ 0, complex otherwise.
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Figure 3. Stability triangle for the AR(2) process

φ1

φ2

φ2 = 1 + φ1 φ2 = 1− φ1

φ2 = −1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0.5

1Direction of increasing ρ∆y
(1)

Notes. The stability triangle corresponds to the (φ1, φ2) pairs lying between the φ2 = 1 + φ1, φ2 =

1 − φ1, and φ2 = −1 lines. The gray triangle in the bottom-right corner identifies the space M
of parameters producing a positive first-order autocorrelation for ∆yt. The curved line separates

parameters associated with real roots (above the curve) from parameters associated with complex

roots (below the curve).

We focus on stationary processes, so that λ1 and λ2 must be inside the unit circle:

|λ1|, |λ2| < 1. Equivalently, the parameters φ1 and φ2 must be in the triangular region

defined by

φ1 + φ2 < 1, φ2 − φ1 < 1, |φ2| < 1. (3)

Figure 3, inspired from Stralkowski (1968) and Sargent (1979), presents this stability triangle.

The ACF of the AR(2) process provides a direct characterization of the dynamics of yt.

As shown in, e.g., Hamilton (1994), it is given by

ρy(0) = 1, ρy(1) =
φ1

1− φ2

, ρy(j) = φ1ρy(j − 1) + φ2ρy(j − 2) for j ≥ 2. (4)

The first-order autocorrelation is increasing in φ1 and can increase or decrease with φ2

depending on the sign of φ1. We also see that ρy(1) → 1 when φ2 → 1 − φ1, so that the

AR(2) process can display strong persistence in levels. More generally, it follows from the

expression of ρy(1) that yt presents a high first-order autocorrelation when φ2 is close to,

but below, 1− φ1, that is when the (φ1, φ2) pair lies next to the right border of the stability

triangle.
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Next, we turn to the first difference of yt. This allows us to develop analytical insights for

the empirical analysis in Section 2.2. Letting ∆ denote the first difference operator, we have

∆yt = yt−yt−1. This difference represents the change in yt between two consecutive periods,

but it can be interpreted as a growth rate if yt is in logarithms. Equation (1) implies

∆yt = φ1∆yt−1 + φ2∆yt−2 + ∆εt,

from which we can compute the ACF of ∆yt:

Proposition 1. The ACF of the first difference of the AR(2) process (1) is given by

ρ∆y(0) = 1, ρ∆y(1) =
φ1 − φ2 − 1

2
, ρ∆y(j) = φ1ρ∆y(j − 1) + φ2ρ∆y(j − 2) for j ≥ 2.

Proof. See Appendix A. �

To the best of our knowledge, the results in Proposition 1 are new to the literature. They

show that the first-order autocorrelation of ∆yt is linearly increasing in φ1 and linearly

decreasing in φ2, with zero cross-derivatives. Thus, short-run momentum is maximized

within the stability triangle when φ1 → 2 and φ2 → −1: in this limit case, ρ∆y(1)→ 1.

On the other hand, it is not possible to generate momentum with a stationary AR(1)

model, which corresponds to the special case φ2 = 0. With this restriction,

ρ∆y(1) =
φ1 − 1

2
,

which is always negative when φ1 ∈ (−1, 1). At the limit, ρ∆y(1)→ 0 when φ1 → 1, so that

the maximum possible first-order autocorrelation for ∆yt in the AR(1) case is zero. This

property echoes the estimates reported in Table 1.

In addition, ρy(1) > ρ∆y(1) for all the (φ1, φ2) pairs verifying the stationarity restrictions.

Therefore, short-run persistence is always larger for the level of the variable than for its first

difference.

The formula for ρ∆y(1) implies that the (φ1, φ2) pairs associated with momentum in yt lie

below the straight line φ2 = φ1− 1. Given the stability restrictions (3), the parameter space

associated with stationary AR(2) processes displaying momentum is defined by

φ1 + φ2 < 1, φ2 − φ1 < 1, |φ2| < 1, φ2 < φ1 − 1. (5)

We will use the symbol M to refer to the (φ1, φ2) pairs verifying the restrictions in (5).

Visually, M is located in the bottom-right corner of the stability triangle, as shown in gray

in Figure 3.

We summarize this discussion in the following:

Corollary 1. Let (φ1, φ2) ∈M. Then, the AR(2) process defined by equation (1) is station-

ary and displays momentum, i.e. ρ∆y(1) > 0. In addition, the process is persistent in levels:

ρy(1) > 0.
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The virtue of this result is twofold. First, it explains why the AR(2) process is able

to reproduce the strong momentum found in real house prices. Second, it identifies the

most plausible parameter configuration for a time series whose level and first difference both

exhibit high first-order autocorrelations: such dynamics occur for (φ1, φ2) pairs located in

the bottom-right corner of the stability triangle, i.e. for relatively high values of φ1 and

relatively low values of φ2. The estimates reported in Section 2.2 all lie in this area.

3. AR(2) Dynamics in a Frictionless Asset-Pricing Model

In this section, we establish conditions under which AR(2) processes arise as equilibrium

solutions of a standard frictionless asset-pricing model under rational expectations. Then,

we build upon our theoretical analysis of AR(2) models to identify parameter configurations

associated with asset-price momentum. Our analytical approach allows us to isolate the

economic forces at play, namely anticipated shocks. Finally, we discuss some equilibrium

properties of the model.

3.1. Economic environment. We consider the following environment. Risk-neutral in-

vestors trade identical Lucas trees, which each pay an exogenous dividend xt at date t

(Lucas, 1978). Letting yt denote the price of a tree, a simple present-value formula implies

yt = βEtyt+1 + xt, (6)

where β ∈ (0, 1) is the investor discount factor and Et denotes the expectation operator

conditional on period-t information. Blanchard (1979) and Gourieroux, Laffont, and Monfort

(1982) discuss similar models.7 We impose a transversality condition to isolate the no-bubble

solution.

From a modeling perspective, the tree is a very durable asset that resembles a house.

Under this interpretation, the dividend is the yield associated with owning a house, for

instance the utility service from living in the house or the payoff from renting the house to

other agents. Gelain and Lansing (2014) and Gelain, Lansing, and Natvik (2018) use similar

interpretations to study house-price dynamics with asset-pricing models.

Usual practice is to close the model by postulating an AR(1) process for xt,

xt = ϕxt−1 + εt,

7The present-value formula (6) characterizes a pre-dividend asset price yt, that is the price of a tree that

is going to pay xt today. Alternatively, following Cochrane (2005, Section 1.4, pp. 24-25), one can compute

a post-dividend asset price ỹt, that is the price of a tree that has already paid xt today and is going to pay

xt+1 tomorrow. This price verifies ỹt = βEt (ỹt+1 + xt+1). It is straightforward to extend our analysis to

this alternative valuation model with very similar results.
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with ϕ ∈ (0, 1) and εt a white noise, and to deduce the asset price yt consistent with

equation (6). The solution is

yt =
1

1− βϕxt,

implying that the equilibrium tree price yt is proportional to the exogenous dividend. Then,

the results from Section 2.3, in particular Proposition 1, imply that the first-order auto-

correlation of ∆yt is negative and converges to a maximum of zero as ϕ → 1. Thus, the

model with AR(1) dividends cannot generate momentum in asset prices. This is a simple

illustration of the widespread idea that frictionless, rational-expectations environments are

not consistent with momentum.

Several variations on equation (6) have been proposed to create momentum. For instance,

Gelain, Lansing, and Mendicino (2013), Gelain and Lansing (2014), Gelain, Lansing, and

Natvik (2018), Glaeser and Nathanson (2017), and Pancrazi and Pietrunti (2019) replace

rational expectations by extrapolative or natural expectations. Head, Lloyd-Ellis, and Sun

(2014) and Guren (2018) replace the frictionless market by a search equilibrium. Anenberg

(2016) allows for gradual learning about market conditions. Burnside, Eichenbaum, and

Rebelo (2016) introduce belief heterogeneity among traders. A very simple representation

of these variations modifies equation (6) into

yt =
b

1 + βb
yt−1 +

β

1 + βb
Etyt+1 +

1

1 + βb
xt, (7)

with β ∈ (0, 1), b ∈ (0, 1), and xt the same AR(1) process as above. Now, the valuation

equation involves a backward-looking term, which captures the impact of past events on

current asset prices. The parameter b measures the strength of this effect, and equation (7)

reduces to the frictionless model (6) when b = 0.

It is straightforward to show that, when xt follows the above AR(1) process, this extended

model implies an AR(2) representation for yt:

yt = (b+ ϕ)yt−1 − bϕyt−2 +
1

1− βϕεt. (8)

The results from from Section 2.3, in particular Corollary 1, then imply that a sufficient

condition for asset-price momentum in the extended model is b + ϕ > 1. Economically,

this configuration occurs when the backward-looking friction is sufficiently strong (high b)

and/or when dividends are persistent enough (high ϕ). Furthermore, the extended model

can only generate an AR(2) process with real roots, which rules out the oscillatory dynamics

found in the AR(2) estimates reported in Table 1 and isolates a tiny part of the parameter

space associated with momentum in Figure 3. Nevertheless, this example highlights how

introducing backward-looking frictions in the structural model can relax the predictions of

theory and generate richer dynamics.
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3.2. Frictionless AR(2) dynamics. Having established that the model with AR(1) divi-

dends does not generate asset-price momentum, we now show that allowing for a richer div-

idend process can overturn this implication. To do so, we maintain the frictionless structure

of the model and we look for dividend processes that yield AR(2) dynamics for equilibrium

asset prices.

Our main result is:

Proposition 2. Let xt be a stationary stochastic process and yt be the solution to equation (6)

given xt. Then, yt has the stationary AR(2) representation given by equation (1),

yt = φ1yt−1 + φ2yt−2 + εt,

with (φ1, φ2) verifying the system of restrictions (3) and εt a white noise innovation with

zero mean and variance σ2 > 0, if and only if xt evolves according to

xt = φ1xt−1 + φ2xt−2 + (1− βφ1)εt − βφ2εt−1. (9)

Proof. See Appendix B. �

Proposition 2 establishes that a frictionless environment can generate endogenous AR(2)

asset-price dynamics under rational expectations, provided that we allow for richer divi-

dend dynamics. This result implied that asset-price momentum is perfectly consistent with

frictionless economies populated with rational, forward-looking agents:

Corollary 2. Let (φ1, φ2) ∈ M. Then the rational-expectations equilibrium asset price yt
features momentum, i.e. ρ∆y > 0.

Proof. Immediate from Corollary 1 and Proposition 2. �

Corollary 2 shows that the arbitrage force created by rational expectations is not enough

to rule out persistent asset-price growth in a frictionless environment. To the best of our

knowledge, we are the first to demonstrate this result, which questions the common wisdom

that asset-price momentum necessarily reveals the presence of strong frictions.8

3.3. Momentum and news shocks. To understand how the model generates asset-price

momentum, we start by studying the dividend process.

8This result also echoes a recurring theme of the literature on economic modeling: the near-equivalence

of endogenous and exogenous dynamics. Our engineering of equilibrium AR(2) dynamics through a richer

dividend process is the flip side of the engineering of AR(2) dynamics through the addition of a backward-

looking component to the valuation equation in Section 3.1. As discussed in, e.g., An and Schorfheide

(2007), structural frictions (the backward-looking term) and exogenous forces (the dividend process) can

often generate similar or identical equilibrium properties for the endogenous variables in dynamic economic

models.
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Corollary 3. If βφ1 6= 1, then xt admits the stationary ARMA(2,1) representation

xt = φ1xt−1 + φ2xt−2 + ε̃t − θε̃t−1, (10)

where

ε̃t := (1− βφ1)εt, θ :=
βφ2

1− βφ1

. (11)

If βφ1 = 1, then xt admits the stationary AR(2) representation

xt = φ1xt−1 + φ2xt−2 − βφ2εt−1. (12)

Proof. Immediate from equation (9). �

Corollary 3 shows that, in general, equilibrium AR(2) dynamics in asset prices require

ARMA(2,1) dividends in the frictionless model. A key implication of the moving-average

component is that dividends must be driven at least partly by anticipated shocks. This

is especially clear in the limit case βφ1 = 1, in which dividends follow an AR(2) process

driven by pure news shocks: agents learn about future dividend movements one period in

advance and the equilibrium asset price immediately adjusts to the news. This is also true

in the generic ARMA(2,1) case, as dividend movements at each period originate from both

contemporaneous and lagged shocks. As discussed in Beaudry and Portier (2014), in MA

models, the parameter θ measures the relative importance of anticipated and contempora-

neous shocks. In the specific context of the house market, the important role of news shocks

has been previously documented by Lambertini, Mendicino, and Punzi (2013a), Kanik and

Xiao (2014), Gomes and Mendicino (2015), and Soo (2018).

To assess the role of news shocks in generating asset-price momentum, we use the following

result:

Corollary 4. Let (φ1, φ2) ∈M, β ∈ (0, 1), and β 6= 1/φ1. If, in addition, β > 1/(φ1 − φ2),

then |θ| > 1.

Proof. See Appendix C. �

Corollary 4 shows that, if agents are patient enough (i.e., if β is large enough), asset-

price momentum occurs only if the MA parameter θ in the dividend process is larger than

one in absolute value. In this case, we say that the ARMA(2,1) process for xt defined by

equation (10) is non-fundamental.9 From an economic perspective, this property means that

the dividend process features a strong anticipated component because the news shock ε̃t−1

9Intuitively, non-fundamentalness means that observing present and past realizations of dividends xt is

not enough to recover the history of shocks ε̃t. More formally, non-fundamentalness implies that ε̃t cannot

be expressed as a stationary function of past observations of xt; instead, it is a stationary function of future

realizations of xt (see, e.g, Hamilton, 1994, Section 3.7, pp. 64-68). These econometric issues do not matter

for our analysis.
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explains a larger share of the dividend variance than the surprise shock ε̃t. Indeed, Beaudry

and Portier (2014) refer to such an economy as “news rich.”

Corollaries 3 and 4 emphasize that the frictionless model needs anticipation effects to

generate momentum in asset prices. The results also highlight the role of the discount

factor: forward-looking agents value the trees according to the expected discounted sum of

current and future dividends, and more patient agents put more weight on still unrealized

but anticipated dividend movements. Therefore, higher values of β are associated with a

larger role for anticipated shocks in the model.

A last interesting property is that our results can hold even when dividend dynamics are

close to an AR(1) process:

Corollary 5. If β → 1 and φ2 → 1− φ1, then θ → 1.

Proof. Immediate from equation (11). �

Corollary 5 shows that a specific parameter configuration within the stability triangle

pushes the MA parameter θ arbitrarily close to one. At the same time, one of the roots of the

AR component converges to one, as can be seen from equation (2). These AR and MA roots

exactly cancel out at the limit and the ARMA(2,1) process for xt simplifies to an unrestricted

AR(1) process with autoregressive parameter φ1 − 1. Since the stability conditions do not

hold at the limit, the corresponding asset price yt converges to an ARIMA(1,1,0) process.

Nevertheless, close to the limit within the stability triangle, yt remains a stationary AR(2)

process and the dividend xt, while still ARMA(2,1) in population, becomes indistinguishable

in finite sample from a simpler AR(1) process. If, in addition, φ1 ∈ (0, 2), then yt retains its

momentum properties because the (φ1, φ2) pair lies in M.

This result establishes that, while our analytical results exploit richer dividend dynamics,

in practice equilibrium asset prices may exhibit strong momentum with dividend dynamics

very close to a standard AR(1) process. This property is especially relevant in light of

the empirical estimates of (φ1, φ2) reported in Section 2, which approximately verify the

restrictions in Corollary 5.10 We show below that structural estimates based on the asset-

pricing model share this property.

3.4. Price-dividend dynamics. Finally, we study the equilibrium price-dividend comove-

ments, which help understand the economic mechanisms at play in the model.

Corollary 6. The correlation between xt and yt is

corr(xt, yt) = [1− βρy(1)]

√
1− φ2

(1− φ2)[(1− βφ1)2 + β2φ2
2]− 2βφ1φ2(1− βφ1)

,

10For instance, the estimate of (φ1, φ2) is equal to (1.87,−0.88) for quadratically-detrended house prices,

and to (1.64,−0.70) for HP-detrended house prices. Thus, in both cases, φ̂2 ≈ 1 − φ̂1, as required by

Corollary 5.
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Figure 4. Impulse-response functions in the asset-pricing model with AR(2)

dynamics
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Notes. In each chart, the solid and dashed black lines show the responses of the equilibrium asset price yt

and the dividend xt to a unitary εt shock. We use β = 0.99 in the computations. The contemporaneous

correlation between asset prices and dividends are equal to 0.29 when (φ1, φ2) = (1.50,−0.55), 0.21 when

(φ1, φ2) = (1.70,−0.75), 0.16 when (φ1, φ2) = (1.90,−0.95), and 0.15 when (φ1, φ2) = (1.98,−0.99).

with ρy(1) = φ1/(1− φ2).

Proof. See Appendix D. The value of ρy(1) comes from equation (4). �

The term in brackets is positive, implying that corr(xt, yt) > 0 within the stability triangle.

This is not surprising: the valuation equation (6) creates a positive long-run link between

asset prices and dividends, by which higher dividends imply higher asset prices on average.

At the same time, the formula shows that very different correlation patterns between xt and

yt are possible, depending on parameter values. On the one hand, there is a unit price-

dividend correlation when β = 0 (zero present value of future dividends) and when φ2 = 0

(AR(1) process for dividends). On the other hand, there are cases in which asset prices

and dividends are almost uncorrelated: in particular, corr(xt, yt) → 0 when β → 1 and

φ2 → 1− φ1.

From an economic perspective, such a decoupling between dividends and asset prices high-

lights once more the role of anticipated shocks, discounting, and rational expectations. Low

correlations are possible only when β → 1, that is when very patient investors put strong
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weight on expected future dividends when computing asset values. In this case, equilibrium

asset prices are largely driven by anticipated dividend movements, which loosens the con-

temporaneous link between asset prices and dividends. Therefore, the same mechanism that

creates momentum in the model works to lower the contemporaneous correlation between

dividends and asset prices. A confirmation of this property follows from varying the value of

the discount factor β while keeping the coefficients (φ1, φ2) fixed. Larger values of β amplify

the role of anticipated shocks by making future dividends more relevant to investors, which

in turn lowers the contemporaneous correlation between dividends and asset prices.11

An equivalent interpretation is that decoupling occurs when negative short-run comove-

ments between dividends and asset prices offset the positive long-run relationship embedded

in equation (6). The unconditional correlation averages comovements across different fre-

quencies, so that opposite short-run and long-run dynamics can combine into low values

for corr(xt, yt). Indeed, equations (1) and (9) imply that a positive εt innovation raises yt
immediately, but lowers xt when βφ1 > 1, a condition likely to hold in the parameter space

M associated with momentum for reasonable values of the discount factor β. Asset prices

rise on impact in spite of the drop in dividends because forward-looking investors correctly

anticipate that a long string of above-average dividend realizations will follow.

Impulse responses of asset prices and dividends to an εt shock support this interpretation,

as shown in Figure 4.12 We focus on four pairs of parameters (φ1, φ2) that are consistent with

momentum in yt and we calibrate the discount factor β = 0.99. For all parametrizations

we consider, the shock triggers negative short-run comovements between asset prices, which

rise on impact, and dividends, which fall on impact. These negative short-run comovements

lead to small price-dividend correlations in the four parametrizations considered, with values

below 0.30.

We also see that asset-price momentum is consistent with impulse-responses of various

shapes. If (φ1, φ2) = (1.50,−0.55), the roots are real and the response of asset prices returns

to zero monotonically after a few periods. The other parametrizations considered in Figure 4

correspond to complex roots and give rise to oscillatory dynamics. Stronger oscillations occur

as (φ1, φ2) gets closer to the bottom-right corner of the stability triangle.

We close this section with two comments. First, our focus on AR(2) dynamics arises

both from their empirical ability to generate momentum documented in Section 2 and from

their analytical tractability. Certainly, richer univariate time-series models could provide

better representations of house prices, but they would come at the expense of intractable

computations that would prevent us from reaching the same understanding of the economic

11These results are available upon request.
12Equations (1) and (9) would allow us to derive analytical responses, but the computations become

tedious after a few periods and the expressions are difficult to interpret. Therefore, we resort to numerical

illustrations for clarity.
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forces at play. Second, the model we consider is highly stylized: there is no friction, investors

are risk neutral, and asset prices and dividends are explained by a single shock. We view this

simplicity as double advantage: it allows us to obtain closed-form results with straightforward

interpretation, which would not be possible in more complicated setups, and it enables

us to demonstrate that equilibrium price momentum can be consistent with the simplest

frictionless, rational expectations environment.

4. Empirical Application

Finally, we provide an empirical application of our analysis. We estimate the asset-pricing

model studied in Section 3 using observations on U.S. house prices. In doing so, we build

upon earlier work by Gelain and Lansing (2014) and Gelain, Lansing, and Natvik (2018),

who also estimated simple asset-pricing models to understand house-price dynamics. Our

goal is to illustrate the quantitative performance of the stylized setup and to link the various

conditions we imposed on the parameters β, φ1, and φ2 to data-coherent values. We also

obtain smoothed estimates of dividends and study their dynamic relationship with house

prices.

We estimate four versions of the model. All versions share the basic valuation equation (6),

reproduced here for convenience:

yt = βEtyt+1 + xt.

The versions differ in the specification of dividends. First, we consider three unrestricted

AR(1), AR(2), and ARMA(2,1) processes:

xt = φ1xt−1 + εt,

xt = φ1xt−1 + φ2xt−2 + εt,

xt = φ1xt−1 + φ2xt−2 + εt + θεt−1.

Then, we consider a restricted dividend process, in which xt has the ARMA(2,1) represen-

tation defined by equation (9) that generates exact AR(2) dynamics for yt:

xt = φ1xt−1 + φ2xt−2 + (1− βφ1)εt − βφ2εt−1.

We refer to this restricted process as R-ARMA(2,1) dividends. In all versions, εt is a white

noise with standard deviation σ.

We consider AR(1) dividends because of the ubiquity of the first-order autoregressive

process in macroeconomics, even though we know that equilibrium asset prices will inherit

the same AR(1) structure in this case. We consider the AR(2) process to evaluate whether

allowing for richer autoregressive dynamics in dividends while omitting anticipated shocks

improves on the AR(1) case. Finally, the unrestricted ARMA(2,1) process provides a slight

generalization of the restricted model, which allows us to test whether the restrictions asso-

ciated with AR(2) asset-price dynamics are supported by the data.
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Table 2. Estimation results for asset-pricing models of U.S. house prices

Estimates Evaluation

Version φ1 φ2 θ 100σ log L ρ∆y(1)

AR(1) 0.99 (0.01) — — 0.02 (0.01) 511.16 −0.00

AR(2) 1.97 (0.01) −0.98 (0.01) — 0.01 (0.01) 566.78 0.16

ARMA(2,1) 1.92 (0.03) −0.93 (0.03) −1.01 (0.01) 0.48 (0.06) 646.18 0.87

R-ARMA(2,1) 1.87 (0.04) −0.88 (0.04) — 0.62 (0.03) 643.82 0.87

Notes. The estimation sample is 1976Q1-2019Q4, conditional on observations 1975Q1-1975Q4, and the

observable is quadratically-detrended log house prices. The discount factor is β = 0.99. Log L denotes

the maximized log-likelihood function and ρ∆y(1) is the first-order autocorrelation of the first difference

of yt implied by the estimated models, i.e. the theoretical momentum of yt. The empirical estimate of

ρ∆y(1) is 0.87. Parentheses report asymptotic standard errors.

We estimate the four model versions by maximum likelihood. We use detrended log house

prices as a direct observation of yt and we treat dividends as unobservable. We report

results for the cyclical component estimated by the quadratic time trend; results for the

other detrending approaches are very similar. Estimating the model using the log-difference

of house prices as a direct observation of ∆yt also provides similar results, which confirms our

insight that momentum plays a crucial role for identification.13 Throughout, we condition

estimation on the first four observations (as in Table 1) and keep the discount factor fixed

at β = 0.99, the standard quarterly value.

Table 2 presents the results. We emphasize four points.

First, specifying AR(1) or AR(2) dividends prevents the model from reproducing the mo-

mentum found in house prices. This is not surprising in the AR(1) case in light of our analysis

in Section 3. More interestingly, we see that including an additional autoregressive term in

the dividend process improves the momentum properties of the model only marginally: the

model-implied value of ρ∆y(1) rises from zero in the AR(1) case to 0.16 in the AR(2) case,

still far from the value of 0.87 found in the data.

Second, allowing for ARMA(2,1) dividends significantly increases the likelihood, formally

rejecting the AR(1) and AR(2) versions. The last column also indicates that this extension

reproduces the persistence of ∆yt. Comparison with the AR(2) version clearly reveals that

introducing anticipated shocks through the MA component has significant impact on the

momentum properties of the model.

The estimated AR coefficients (φ1, φ2) belong toM, the parameter space associated with

momentum highlighted in Section 3. The associated roots, 0.96 ± 0.11i, are close to those

estimated in Section 2.2. In addition, the estimated MA coefficient θ is slightly above one, so

13All these results are available upon request.
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Figure 5. Impulse-response functions in estimated asset-pricing models

Notes. In each chart, the solid line is the response estimated in the AR(1) version, the dashed line is

the response estimated in the AR(2) version, the dash-dot line is the response estimated in the unre-

stricted ARMA(2,1) version, and the dotted line is the response estimated in the restricted ARMA(2,1)

version. The estimation sample is 1976Q1-2019Q4, conditional on observations 1975Q1-1975Q4, and

the observable is quadratically-detrended log house prices. The discount factor is β = 0.99.

that the MA component of dividends is non-fundamental.14 These two findings highlight the

interest of our theoretical analysis: using only the constraints associated with momentum,

we were able to characterize a priori the parameter space most likely to reproduce the

data correctly. From an identification perspective, this means that momentum is a very

informative property to discriminate among various models of house prices.

Third, the version with restricted ARMA(2,1) dividends produces results that closely

match those obtained with unrestricted ARMA dividends in terms of point estimates and

momentum. On the other hand, a formal likelihood comparison would reject the restricted

version at the 5% level, which amounts to rejecting an exact AR(2) representation for house

prices in favor of a closely related, albeit slightly more general, process. This outcome echoes

the reduced-form estimates reported in Section 2.2: although the AR(2) model may not fit

as well as richer alternatives, it provides a parsimonious representation of detrended house

prices that captures the most important cyclical properties of the series.

Using equation (11), the estimate (φ1, φ2) = (1.87,−0.88) and the calibrated value β =

0.99 imply a restricted MA coefficient of θ = −βφ2/(1−βφ1) = −1.03. This value is close to

the unrestricted estimate θ = −1.01 and lies in the non-fundamental space associated with

news-rich processes. These observations are confirmed by the IRFs reported in Figure 5: the

estimated responses in the unrestricted and restricted ARMA(2,1) versions closely resemble

each other and present the same hump-shaped behavior. They also look like the IRFs in the

14This is not an econometric issue because we estimate a structural model using observations on the

fundamental process yt.
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Figure 6. Persistence properties of smoothed ARMA dividends
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Notes. The left-hand panel shows the autocorrelation function (ACF) of smoothed dividends in the

unrestricted ARMA(2,1) model version, while the right-hand panel shows the partial autocorrelation

function (PACF). Dark bars represent sample statistics and shaded areas show heteroskedasticity-robust

95% confidence intervals centered around zero. Blue lines show the values implied by the unrestricted

ARMA(2,1) process estimated from the data and red lines show the values implied by the AR(1) model

with persistence parameter ϕ = φ̂1 − 1 = 0.92. The estimation sample is 1976Q1-2019Q4, conditional

on observations 1975Q1-1975Q4, and the observable is quadratically-detrended log house prices. The

discount factor is β = 0.99.

lower-left panel of Figure 4, highlighting again the link between our theoretical discussion

and the empirical estimates.

Fourth, in the two ARMA versions, estimated dividend dynamics are close to an AR(1)

process. Indeed, the structural estimates approximately verify the conditions of Corollary 5:

the discount factor β is close to one, the estimates of 1−φ1 and φ2 are very similar, and the

estimates of θ are just above one in absolute value. It follows that the ARMA representations

of dividends almost simplify to AR(1) processes in this case.

We can evaluate the quality of this approximation by examining the dividend series

smoothed from the estimated models. This is what we do in Figure 6, which reports the ACF

and PACF of the smoothed dividends recovered from the unrestricted ARMA(2,1) version

of the model. (Results are similar for the restricted ARMA version.) Each panel shows

the sample statistics estimated from the dividends in black, together with robust confidence

intervals. The blue lines show the theoretical values implied by the ARMA(2,1) parameter

estimates. The red lines show the theoretical values implied by the AR(1) process with

autoregressive parameter ϕ = φ̂1 − 1, which corresponds to the limit process in Corollary 5.

The AR(1) process provides a very good approximation of the first four autocorrelations of

dividends, whether estimated from the smoothed series or implied by the ARMA estimates.

It also generates a PACF very close to that implied by the ARMA estimates.
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Figure 7. U.S. house prices and smoothed dividends

Notes. Panel A shows quadratically-detrended log real house prices (solid line) and the demeaned div-

idend process smoothed from the restricted ARMA(2,1) version of the model (dashed line). Dividends

are normalized to have the same standard deviation as house prices. Shaded areas represent the NBER

recession dates. Panel B shows the sample cross-correlation between current house prices yt and past

and future dividends xt+j for j = −20, . . . , 20, with the shaded band reporting a 95% GMM confidence

interval. The estimation sample is 1976Q1-2019Q4, conditional on observations 1975Q1-1975Q4, and

the discount factor is β = 0.99.

We also see that the partial autocorrelations estimated from the smoothed dividends are

small from lag 2 on, with most of them lying well inside the confidence band centered around

zero. Clearly it would be difficult for an economist observing these dynamic properties to

select an ARMA(2,1) representation for dividends over the simpler AR(1) alternative. The

main point of our analysis is that this choice would have crucial implications for the implied

momentum properties of house prices in the theoretical model, as ARMA(2,1) dividends

generate strong positive serial correlation in equilibrium asset-price growth while AR(1)

dividends do not.

Finally, Panel A in Figure 7 reports the cyclical house price variable used in estimation,

together with the dividends smoothed from the restricted ARMA(2,1) model. To make the

chart easier to read, we rescale dividends so that the two series have the same variance.

Visually, we see that dividends tend to rise during expansions and to fall during and after

recessions, which is plausible for a variable driving housing demand.

It is also striking that house prices lead smoothed dividends by several quarters. This

pattern reflects the presence of news shocks in the model, as asset prices adjust instan-

taneously to information about future dividend movements. The lead is quantified by the

cross-correlogram reported in Panel B. While the contemporaneous correlation between house

prices and dividends is as low as 0.16, the correlation between current house prices and fu-

ture dividends increases significantly over a number of periods: 0.56 at the one-year horizon,
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0.74 at the two-year horizon, and up to 0.76 at an horizon of 10 quarters. This observation

indicates that the model delivers strong amplification: a frictionless economy, driven only in

part by shocks anticipated one quarter in advance, implies a lead-lag pattern of more than

two years between equilibrium asset prices and fundamentals.

5. Conclusion

Frictionless economic models populated by rational, forward-looking agents and driven by

specific ARMA(2,1) forcing processes are consistent with equilibrium asset-price momentum.

To establish this result, we start by documenting that simple AR(2) models provide a good

approximation to the cyclical behavior of U.S. house prices, in particular as regards the

positive autocorrelation of their first difference. Then, we show analytically that ARMA(2,1)

exogenous forces give rise to equilibrium AR(2) asset-price dynamics in a frictionless present-

value model. Our pen-and-paper strategy identifies the specific parameter configuration

associated with momentum and allows us to provide an economic interpretation of the results,

emphasizing the role of anticipated shocks.

These results are important because they question the common wisdom that frictionless,

rational-expectations environments rule out asset-price momentum. Our analysis suggests

that rational expectations about future price developments can be consistent with asset-

price momentum if agents in the economy can anticipate future returns. Of course, we

do not claim that news shocks account for all momentum in house prices, every time and

everywhere. Rather, our claim is that the mechanism we emphasize may coexist with other

frictions to explain the strong autocorrelation of house-price growth. Another possibility

is that the smoothing induced by seasonal adjustment amplifies the amount of momentum

found in the data. Therefore, an important question for future research is to evaluate the

respective roles of these alternative explanations, for instance by letting them compete to

explain the data within an encompassing setup.
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Appendix A. Proof of Proposition 1

We start from the first-difference representation of the AR(2) process

∆yt = φ1∆yt−1 + φ2∆yt−2 + ∆εt, (A.1)

where ∆ is the difference operator. Then, multiply equation (A.1) by ∆yt, ∆yt−1, and ∆yt−2,

and take expectations. Since yt has zero mean, this amounts to computing covariances. We

get

γ∆y(0) = φ1γ∆y(1) + φ2γ∆y(2) + cov(∆εt,∆yt),

γ∆y(1) = φ1γ∆y(0) + φ2γ∆y(1) + cov(∆εt,∆yt−1),

γ∆y(2) = φ1γ∆y(1) + φ2γ∆y(0) + cov(∆εt,∆yt−2),

where γ∆y(j) denotes the jth autocovariance of ∆yt for j = 0, 1, 2.

To solve this system, we use the MA(∞) representation associated with the AR(2) process

for yt. It is given by

yt =
∞∑
j=0

Ψjεt−j, (A.2)

where Ψ0 = 1, Ψ1 = φ1, Ψ2 = φ2
1 + φ2, Ψ3 = φ3

1 + 2φ1φ2, and Ψj = φ1Ψj−1 + φ2Ψj−2 for

j > 3. Taking first differences, we get

∆yt =
∞∑
j=0

Ψj∆εt−j.

Using that cov(εt, ετ ) = 0 if t 6= τ , we deduce

cov(∆εt,∆yt) = (2− φ1)σ2,

cov(∆εt,∆yt−1) = −σ2,

cov(∆εt,∆yt−2) = 0.

Inserting these covariances in the above system and dividing by γ∆y(0) yields

1 = φ1ρ∆y(1) + φ2ρ∆y(2) +
(2− φ1)σ2

γ∆y(0)
,

ρ∆y(1) = φ1 + φ2ρ∆y(1)− σ2

γ∆x(0)
,

ρ∆y(2) = φ1ρ∆y(1) + φ2,

where ρ∆y(0) = 1 and ρ∆y(j) = γ∆y(j)/γ∆y(0) for j = 1, 2. We deduce that

σ2

γ∆y(0)
= φ1 − (1− φ2)ρ∆x(1).
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Using this result and the equality ρ∆y(2) = φ1ρ∆y(1) + φ2, we can rewrite the first equation

of the system as

ρ∆y(1) =
1 + φ2

1 − 2φ1 − φ2
2

φ1 + φ1φ2 − (2− φ1)(1− φ2)
.

We simplify the numerator to

1 + φ2
1 − 2φ1 − φ2

2 = (φ1 − φ2 − 1)(φ1 + φ2 − 1)

and the denominator to

φ1 + φ1φ2 − (2− φ1)(1− φ2) = 2(φ1 + φ2 − 1).

It follows that

ρ∆y(1) =
φ1 − 1− φ2

2
.

Finally, we can determine the full autocorrelation function from the recurrence equation

ρ∆y(j) = φ1ρ∆y(j − 1) + φ2ρ∆y(j − 2), for j ≥ 2,

with ρ∆y(0) = 1 and ρ∆y(1) obtained above.

Appendix B. Proof of Proposition 2

We start with the “if” part. Suppose that xt evolves according to

xt = φ1xt−1 + φ2xt−2 + (1− βφ1)εt − βφ2εt−1,

where εt is a white-noise innovation with zero mean and variance σ2, and define yt as the

solution of the valuation equation

yt = βEtyt+1 + xt,

where β ∈ (0, 1) is the discount factor and Et denotes the expectation operator conditional

on period-t information.

We solve the model using the method of undetermined coefficients. We suppose that the

solution for yt verifies

yt = µ1xt + µ2xt−1 + µ3εt,

where the µ’s are unknown parameters. Inserting this guess into the valuation equation and

using term-by-term identification yields

µ1 =
1

1− βφ1 − β2φ2

, µ2 =
βφ2

1− βφ1 − β2φ2

, µ3 =
−β2φ2

1− βφ1 − β2φ2

.

Therefore, we have

yt = (µ1 + µ2B)xt + µ3εt =

[
(µ1 + µ2B)(1− βφ1 − βφ2B)

1− φ1B − φ2B2
+ µ3

]
εt,

or equivalently

(1− φ1B − φ2B
2)yt =

[
(µ1 + µ2B)(1− βφ1 − βφ2B) + µ3(1− φ1B − φ2B

2)
]
εt.
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Using the expressions for µ1, µ2, and µ3, it is easy to show that the bracket on the right-hand

side of the equation simplifies to one. It follows that

yt = φ1yt−1 + φ2yt−2 + εt,

which proves the “if” part.

Second, we establish the “only if” part. Suppose that yt has the stationary AR(2) repre-

sentation

yt = φ1yt−1 + φ2yt−2 + εt,

where εt is a white-noise innovation with zero mean and variance σ̃2. Suppose also that yt
solves the valuation equation

yt = βEtyt+1 + xt,

where β ∈ (0, 1) is the discount factor and Et denotes the expectation operator conditional

on period-t information.

Then, we can substitute out yt+1 in the valuation equation to get

yt = βEt [φ1yt + φ2yt−1 + εt+1] + xt.

This equation simplifies to

yt = βφ1yt + βφ2yt−1 + xt,

or

xt = (1− βφ1)yt − βφ2yt−1.

Using the AR(2) representation of yt, this equation implies that xt evolves according to

xt = φ1xt−1 + φ2xt−2 + (1− βφ1)εt − βφ2εt−1.

This establishes the “only if” part.

Appendix C. Proof of Corollary 4

Recall that

θ =
βφ2

1− βφ1

.

Viewed as a function of the discount factor, there is a discontinuity in θ(β) at β = 1/φ1.

Consider first small values of β, i.e. β < 1/φ1. Then, 1 − βφ1 > 0 and θ(β) < 0.

Therefore, non-fundamentalness arises in this area when θ(β) < −1, which is equivalent to

β > 1/(φ1 − φ2). Note that φ2 < 0 implies that 1/(φ1 − φ2) < 1/φ1, so that there is a

non-empty set of β values generating a non-fundamental ARMA process for xt in this case.

Second, consider large values of β, i.e. β > 1/φ1. Then, 1 − βφ1 < 0 and θ(β) > 0.

Therefore, non-fundamentalness arises in this area when θ(β) > 1, which is equivalent to

β(φ1 +φ2) < 1. This condition is always true within the stability triangle because β ∈ (0, 1)

and φ1 + φ2 < 1.
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Therefore, we conclude that, within the subsetM of the stability triangle associated with

momentum in yt, |θ(β)| > 1 if β > 1/(φ1 − φ2).

Appendix D. Proof of Corollary 6

We show in Appendix B that the solution of the model verifies

xt = (1− βφ1)yt − βφ2yt−1.

It follows that

cov(xt, yt) = (1− βφ1)γy(0)− βφ2γy(1) = γy(0)[1− βφ1 − βφ2ρy(1)].

Using that ρy(1) = φ1/(1− φ2), this expression simplifies to

cov(xt, yt) = γy(0)[1− βρy(1)].

It is clear that cov(xt, yt) > 0 since |βρy(1)| < 1. Then, the correlation between xt and yt is

given by

corr(xt, yt) =
cov(xt, yt)√
γy(0)γx(0)

= [1− βρy(1)]

√
γy(0)

γx(0)
.

To compute γy(0)/γx(0), note that

γx(0) = φ1γx(1) + φ2γx(2) + (1− βφ1)2 − βφ1φ2(1− βφ1) + β2φ2
2,

γx(1) =
φ1γx(0)

1− φ2

− βφ2(1− βφ1)

1− φ2

.

It is also easy to show that

γx(2) = φ1γx(1) + φ2γx(0).

Dividing all three equations by γx(0) yields

1 = φ1ρx(1) + φ2ρx(2) +
(1− βφ1)2 − βφ1φ2(1− βφ1) + β2φ2

2

γx(0)
,

ρx(1) =
φ1

1− φ2

− βφ2(1− βφ1)

(1− φ2)γx(0)
,

ρx(2) = φ1ρx(1) + φ2.

Combining these conditions, we get

1 =
φ2

1

1− φ2

−βφ1φ2(1− βφ1)

(1− φ2)γx(0)
+
φ2

1φ2

1− φ2

−βφ1φ
2
2(1− βφ1)

(1− φ2)γx(0)
+φ2

2+
(1− βφ1)2

γx(0)
−βφ1φ2(1− βφ1)− β2φ2

2

γx(0)
.

This can be rearranged into

1−φ2
2−

φ2
2(1 + φ2)

1− φ2

= −βφ1φ2(1− βφ1) + βφ1φ
2
2(1− βφ1)

(1− φ2)γx(0)
+

(1− βφ1)2 − βφ1φ2(1− βφ1) + β2φ2
2

γx(0)
.
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Now, we use the fact that the variance of yt is

γy(0) =
(1 + φ2)[(1− φ2)2 − φ2

1]

1− φ2

,

which is just the inverse of the left-hand side of the previous equation. After some algebra,

it follows that

γx(0)

γy(0)
=

(1− φ2)[(1− βφ1)2 + β2φ2
2]− 2βφ1φ2(1− βφ1)

1− φ2

.

Plugging this expression in the equation for the correlation between xt and yt, we obtain

corr(xt, yt) =

(
1− βφ1

1− φ2

)√
1− φ2

(1− φ2)[(1− βφ1)2 + β2φ2
2]− 2βφ1φ2(1− βφ1)

.
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