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Abstract. I explore the optimal timing of environmental policy when the stock of natural

capital is unobserved and can only be imperfectly measured. I present two key insights.

First, noisy signals about the natural capital stock blur the inference process, thereby easing

the conditions under which policy adoption becomes optimal. Second, the interaction be-

tween natural capital stock volatility and the inference process gives rise to new effects that

are absent under perfect information. Specifically, the impact of increased volatility on the

conditions for optimal policy adoption varies depending on the information set. My work

contributes to both the environmental policy timing literature and the field of resource man-

agement under incomplete information.
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RÉSUMÉ NON TECHNIQUE

Le changement climatique est pertinent pour la politique monétaire de la zone euro, vu

qu’il concerne non seulement l’objectif primaire des banques centrales, la stabilité des prix,

mais aussi leurs objectifs secondaires, dont le soutien aux politiques économiques générales

dans l’Union européenne. C’est ce que Mme Lagarde, présidente de la Banque centrale eu-

ropéenne (BCE), a rappelé à la Commission des affaires économiques et monétaires du Par-

lement européen lors du dialogue monétaire de novembre 2023. En effet, la BCE a adopté

un programme d’action pour le climat en 2022 à l’issu de son évaluation stratégique de la

politique monétaire. Entre autres, ce programme d’action prévoit d’améliorer les modèles

macroéconomiques afin qu’ils tiennent compte des risques liés au changement climatique.

Dans ce contexte, cet article étudie le moment optimal pour l’adoption de la politique envi-

ronnementale. Etant donné que les mesures pour protéger l’environnement peuvent com-

porter des coûts économiques et sociaux, à quel moment faut-il introduire une telle politique

de protection ? Ce cahier analyse comment la présence d’incertitude influe sur la réponse à

cette question.

En effet, une des difficultés majeures face à la politique environnementale est la mesure du

capital naturel, qui englobe les ressources naturelles telles que la géologie, le sol, l’air, l’eau et

toutes les formes de vie. Le capital naturel fournit les biens et les services qui rendent possible

la vie sur Terre. L’eau que nous buvons, la nourriture que nous mangeons et l’air que nous

respirons en sont des exemples concrets. Mesurer des éléments aussi complexes est difficile ;

il n’existe pas de métrique simple et universelle. Les décideurs politiques doivent souvent se

baser sur plusieurs indicateurs imparfaits pour mesurer l’évolution du capital naturel.

Cette étude propose un modèle mathématique simple qui s’affranchit de l’hypothèse tradi-

tionnelle selon laquelle les décideurs politiques auraient une information complète sur l’état

du capital naturel. En fonction de ce modèle, le stock de capital naturel se détériore selon

un processus stochastique avec tendance baissière et le décideur doit choisir le moment op-

timal pour arrêter cette détérioration, sachant que cette décision engendre des coûts socio-

économiques, tels que la perte de certains emplois ou de certains actifs devenus irrécupérables
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ou échoués. La nouveauté du modèle est que le décideur ne peut pas observer directement

le niveau du stock de capital naturel mais doit l’inférer à partir d’informations incertaines.

Par exemple, imaginons un décideur responsable de la protection d’un écosystème fragile, su-

jet à des chocs imprévisibles, tels que des variations climatiques affectant l’apparition d’une

maladie liée à la pollution. Il doit choisir le meilleur moment pour mettre en place une poli-

tique de conservation en considérant ses coûts socio-économiques ainsi que de l’incertitude

entourant la fragilité de l’écosystème.

Les résultats de l’analyse véhiculent deux messages importants. Tout d’abord, l’incertitude

rend plus probable l’adoption de la politique. L’intuition est simple : l’incertitude encour-

age l’implémentation de mesures afin de prévenir des dommages potentiels graves. En-

suite, l’interaction entre la volatilité du capital naturel et l’estimation de son niveau affecte

la stratégie optimale à travers des canaux supplémentaires par rapport à la situation sans

incertitude. Plus précisément, une hausse de la volatilité du capital naturel a des effets plus

complexes sur la stratégie d’adoption, comparé à la situation où le décideur dispose de toutes

les informations.

La prise de décision en matière de protection de l’environnement est cruciale ; en fin de

compte, l’objectif est de préserver un environnement sain pour les générations présentes

et futures. En montrant comment les décisions peuvent tenir compte de l’incertitude et de

l’information imparfaite, cette étude révèle qu’une information incomplète sur l’état du cap-

ital naturel ne devrait pas servir d’excuse pour retarder l’adoption de politiques de protec-

tion. Au contraire, le modèle montre qu’une incertitude accrue facilite les conditions sous

lesquelles l’adoption de telles politiques devient optimale.
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If heaven had given me a few more years, I would have made Paris the capital of the Universe.

Napoleon Bonaparte

1. INTRODUCTION

When should society implement a costly policy to safeguard the environment? In his sem-

inal works, Pindyck (2000, 2002) addresses this question using the real option theory. In

his setup, environmental quality follows a stochastic process with a downward trend. A

decision-maker must then choose the optimal time to enact a policy that safeguards the en-

vironment, but incurs economic costs. He analyses how structural factors, such as environ-

mental volatility and the discount rate, affect the timing of environmental policy.

Pindyck’s work relies on a strong assumption: full information. The controller perfectly

observes environmental quality at each instant. In reality, however, measuring something

as complex as natural capital (or its inverse, environmental degradation) is hard; there is no

simple, granular, universal metric. Hence, policy makers often monitor different indicators

to understand how natural capital stocks are changing around the world (Dasgupta, 2021).

To illustrate, the Living Planet Index (LPI) measures the state of global biodiversity by track-

ing thousands of population trends of vertebrate species.1 Widely used by conservationists

and policymakers, the index was, for example, adopted by the Convention on Biological Di-

versity as an indicator of progress towards its target to ‘take effective and urgent action to halt

the loss of biodiversity’.2 As shown in Figure 1, however, significant uncertainty surrounds

the index. These wide confidence bands, a recurring feature in biodiversity indicators, high-

light the challenges of measuring natural capital stocks.

Therefore, my model relaxes the full information assumption. Instead, it presents an opti-

mal stopping problem under partial information. This still assumes a stochastic process with

a negative drift for the stock of natural capital. A controller must choose the optimal time

to implement a policy that permanently freezes the natural capital stock at its current level.

However, implementing the policy is costly, for it has a negative impact on the reward func-

tion. Moreover, there is an exogenous terminal time T by which the policy must have been

1For more details, please refer to https://www.livingplanetindex.org.
2For more details, please refer to https://www.cbd.int/sp/elements/
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FIGURE 1. Living Planet Index
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Notes. The Living Planet Index measures the state of global biological diversity based on population trends of
vertebrate species from terrestrial, freshwater and marine habitats. Bold lines show index values and shaded
areas represent statistical certainty surrounding the trends (95%). The Living Planet Index is maintained by the
World Wildlife Fund and the Zoological Society of London.

adopted. The novel modelling feature is that the controller does not observe the stock of nat-

ural capital; that is, she faces ignorance uncertainty (Tsur and Zemel, 2014). She must therefore

infer the level of the natural capital stock by combining a noisy signal with her own past

beliefs.3

A simple example helps to illustrate the rationale of my model. A policymaker is respon-

sible for safeguarding a fragile ecosystem susceptible to unpredictable shocks, like weather

changes affecting the outburst of a pollution-induced disease. Specifically, her task is to de-

termine the right moment to implement a conservation policy that preserves the ecosystem

at its current state. In making this decision, she faces three challenges. First, adopting the

policy involves economic costs, such as job losses and stranded assets. Second, the ecosys-

tem’s fragility is not known with certainty, and can only be imperfectly measured. Third,

there is a deadline T by which the policy must be in place. For instance, this deadline can

arise from institutional commitments to halt the degradation of natural capital by a specific

date, or from the intolerable risks of irreversible harm entailed by delaying policy adoption

beyond T.

3Formally, the controller maximises expected reward G(t, x(t)) by choosing the optimal stopping time τ ≤
T. She values natural capital x(t), which follows a geometric Brownian motion with a negative drift coefficient;
so Gx(t, x(t)) > 0. The controller does not observe x(t); only a disturbed version of it, s(t). Hence, she uses
the Kalman-Bucy filter to estimate the conditional distribution of x(t) given the filtration generated by s(t), F s.
The optimal stopping time τ ≤ T must then be F s-adapted.
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My model conveys two key messages. First, a noisy signal about the current natural capital

stock eases the conditions under which policy adoption becomes optimal. As will become clear,

policy adoption becomes optimal as soon as the natural capital stock exceeds an endogenous

threshold. My model predicts that a noisier signal will lower the threshold. The intuition

is straightforward. Noise blurs the inference process, prompting the controller to lower the

policy adoption threshold in an attempt to mitigate the deterministic decline in the natural

capital stock.

The second key message is that the interaction between the volatility of the natural capital stock

and the inference process gives rise to new effects that are absent in the full information baseline.

Specifically, my model suggests divergent effects of high environmental volatility on the pol-

icy adoption threshold when compared to the full information baseline. This occurs because,

under partial information, increased volatility heightens the uncertainty surrounding the in-

ference process, a channel that is not present under full information. For instance, in a full

information context, my model often suggests that greater environmental volatility leads to

higher adoption thresholds, as in Pindyck (2000, 2002). However, partial information can

reverse this effect, actually leading to lower thresholds.

For simplicity, I begin by analysing an infinite horizon setup; that is, T → ∞. This is not the

most realistic scenario, because the controller is shielded against extreme negative realisa-

tions of the natural capital stock: she can take no action and obtain a zero reward. Nonethe-

less, letting T → ∞ enables me to solve the full information baseline analytically and provide

straightforward insights into the partial information setup. Once this simpler scenario is fully

understood, I move on to the finite horizon setup where T < ∞. Though this new setup ac-

cepts no closed-form solution, and certain outcomes are slightly more involved, the two key

messages emphasised above remain perfectly valid.

As mentioned already, this work contributes to the literature on environmental policy tim-

ing. Several papers have followed Pindyck (2000, 2002) in using the real option approach to

deal with environmental protection. In highly cited works, Kassar and Lasserre (2004) study

biodiversity preservation decisions, and Saphores and Shogren (2005) assess how to optimise

the use of pesticides. Also, Ben Abdallah and Lasserre (2012) explores when to stop logging
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when the survival of an endangered species hinges on forest habitat. Furthermore, Nishide

and Ohyama (2009) extend Pyndick’s framework by examining how the size of the under-

lying economy influences the optimal policy timing. Similarly, Agliardi and Sereno (2012)

expand the framework by introducing a public finance dimension. Lastly, Sims and Finnoff

(2016) reveal that modelling tipping points leading to irreversible environmental damages

lowers the value of delaying policy adoption, for policies that were once effective become

ineffective. I deviate from these papers by relaxing the full information hypothesis.

In addition, my paper relates to the literature studying resource management under uncer-

tainty and learning. As Sloggy et al. (2020) note, most models of natural resource manage-

ment ignore partial information regarding changes in state variables, even though, in reality,

owners and managers routinely invest in information on the stock of their resources. There

are, nonetheless, important exceptions. Clark and Kirkwood (1986), for instance, explores

the optimal harvest policy of a renewable resource when the owners cannot accurately mea-

sure current stock levels. In turn, Roughgarden and Smith (1996) finds that the inherent

problem of over-fishing is exacerbated by uncertainty in fish stock size and dynamics. More

recently, several authors have presented large quantitative models -all related to partially

observable Markov decision processes- studying resource management under state uncer-

tainty. For example, MacLachlan et al. (2017) explore the optimal control of bovine tuber-

culosis in New Zealand cattle when the prevalence of the disease is imperfectly observed.

Also, Memarzadeh and Boettiger (2018) argue that underestimating the role of uncertainty

results in aggressive decision rules which might lead to the dramatic decline and possible

collapse of a population, species, or ecosystem. My work has a different emphasis. It pro-

poses a tractable, stylised optimal stopping setup to assess how the interaction between state

uncertainty and volatility affects the timing of environmental policy decisions.

From a mathematical standpoint, my work relies on the optimal stopping literature. Stan-

dard references include Øksendal (2003) and Peskir and Shiryaev (2006). However, partial

information brings specific challenges that diverge from the general theory. For example,

the reward function is not adapted to the filtration generated by the observable process. To

address these challenges, I leverage well-known techniques, my key sources being Bertsekas

(1995), Ludkovski (2009) and Zhou (2013). Lastly, most of the resulting free boundary partial
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differential equations do not accept a closed-form solution. Therefore, I use the explicit finite

difference method presented in Brandimarte (2013).

The remainder of the paper is organised as follows. Section 2 studies the full information

baseline with an infinite time horizon. Section 3 relaxes the full information assumption.

Section 4 confirms that the paper’s key messages remain valid in a finite time horizon setup.

Section 5 concludes.

2. OPTIMAL STOPPING UNDER FULL INFORMATION

2.1. Set up. Consider an infinite-horizon environment in continuous time. Let x(t) be a state

variable summarising the stock of natural capital. For example, x(t) might refer to forest

cover, marine fisheries or the atmosphere’s ability to absorb carbon emissions. Let δx(t) be

the rate of change of x(t) in the absence of stochastic disturbances. In the real world, two

competing forces determine whether δ is positive or negative. On the one hand, natural cap-

ital regenerates, e.g., forests generate new growth by sowing, animal populations reproduce,

and carbon concentrations gradually leave the atmosphere. On the other hand, human ac-

tivity degrades most of the planet’s ecosystems. Clearly, the strong deterioration of natural

capital observed in recent decades (Diaz et al., 2019) indicates the dominance of the second

force. Hence, I assume δ ≤ 0. Lastly, let W(t) be a 1-dimension Brownian motion. Natural

capital then evolves by:

dx(t) = δx(t)dt +
√

σxx(t)dW(t), (1)

where σx ≥ 0 governs how volatile x(t) is. Formally, x(t) follows a geometric Brownian

motion with drift δ and volatility
√

σx. For future reference, let me assume that x(0) is log-

normally distributed.

The decision maker can stop process x(t) at any instant τ ∈ (0, ∞), and obtain the reward

G(τ, x(τ)). Stopping the process could represent, for instance, the implementation of a new

environmental policy that halts the decline of natural capital. Reward G(τ, x(τ)) would then

reflect the social or economic benefits derived from the policy. For mathematical tractability,

I assume that the reward obtained per unit of time is zero as long as the process x(t) has not
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been stopped.4 Therefore, the optimal stopping problem is:

V(t, x(t)) = sup
τ≥t

EtG(τ, x(τ)) = sup
τ≥t

Ete−ρτ

[
x(τ)α

α
− C

]
, (2)

where Et denotes the expectation operator based on information available at t, ρ ≥ 0 is the

discount rate, α ∈ (0, 1) determines the coefficient of constant relative risk aversion, and

C ≥ 0 represents the cost associated with stopping the process. This cost captures the social

or economic damages from adopting a new environmental policy, including job losses and

stranded assets.

In sum, given the stochastic process x(t), the optimal stopping problem is to compute the

value function V∗(t, x(t)) and characterise the optimal stopping time τ∗ at which the supre-

mum is attained.5

2.2. Solution. Formally, solving an optimal stopping problem for a Markov process is equiv-

alent to finding the smallest superharmonic function that dominates the reward function on

the state space (see e.g. Øksendal, 2003; Peskir and Shiryaev, 2006). Therefore, the optimal

stopping problem can be reduced to solving a partial differential equation with a free bound-

ary condition dividing the state space in two regions: a continuation region and a stopping

region. This boundary is not known in advanced and must be found as part of the problem’s

solution. I solve (1)-(2) using this approach.

Let

A :=
{
(t, x) ∈ R+ × R+ : V(t, x(t)) > G(t, x(t))

}
be the continuation region; as long as (t, x(t)) ∈ A, stopping the process is not optimal.

Similarly, let

B :=
{
(t, x) ∈ R+ × R+ : V(t, x(t)) = G(t, x(t))

}
be the optimal stopping region; as soon as (t, x(t)) ∈ B, stopping the process is optimal. The

optimal stopping time is defined as τ∗ := inf {t ∈ R+ : (t, x) /∈ A}. The value function in (2)

4Appendix A discusses this assumption.
5More formally, let (Ω,F , P) be a probability space hosting the Markov process x(t). Let F x

t be the filtration
of x(t); that is, the sigma-algebra generated by x(t). A random time τ : Ω → R+ is a F x

t -stopping time if
{ω ∈ Ω : τ(ω) ≤ t} ∈ F x

t . Let T x be the set of F x-stopping times. The optimal stopping time for (2) is the
supremum taken over the set of all stopping times in T x.
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then solves the free-boundary problem:

Vt(t, x(t)) + LxV(t, x(t)) = 0 in A,

V(t, x(t))|B = G(t, x(t))|B,

∇V(t, x(t))|∂B = ∇G(t, x(t))|∂B.

(3)

Here Lx is the characteristic operator of x(t) and ∂B the boundary of set B. The third equa-

tion captures the well-known high contact (or smooth fit) principle, stating that the optimal

boundary ∂B is selected so that the value function is smooth on it. Importantly, system (3)

only provides a candidate for the solution of the optimal stopping problem (1)-(2). Hence, to

confirm that such a candidate actually provides the optimal solution, a verification theorem

is required. As discussed in Appendix B, I rely on the verification theorem 4.28 in Seierstad

(2009), which is closely related to theorem 10.4.1 in Øksendal (2003). Furthermore, Appendix

B shows that for the optimal stopping problem (1)-(2) to be well-defined, I must assume the

following.

Assumption 1. Define µ =
( σx

2 −δ)+
√

(δ− σx
2 )2+2ρσx

σx
. Then α < µ < α

1−α .

Briefly, this assumption guarantees that the boundary between the continuation and the

stopping regions is well-defined and that the candidate solution obtained from solving sys-

tem (3) is optimal.

Proposition 1. Under Assumption 1, the value function of the optimal stopping problem (1)-(2) is:

V(t, x(t)) =

e−ρt x∗α

µ

(
x(t)
x∗

)µ
for 0 < x(t) < x∗,

e−ρt
(

x(t)α

α − C
)

for x(t) ≥ x∗,
(4)

where x∗ =
(

αµC
µ−α

) 1
α . Moreover, the optimal stopping time is

τ∗ = inf
{

t ∈ R+ : x ≥ x∗
}

.

Proof. See Appendix B. □

Thus, it is optimal to adopt the policy as soon as the natural capital stock exceeds x∗. Figure

2 illustrates the optimal stopping strategy, depicting the three possible alternatives: immedi-

ate policy adoption, policy adoption at some future date, or no policy adoption.
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FIGURE 2. Graphical illustration of the optimal stopping strategy.
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Notes. It is optimal to adopt the environmental policy as soon as
the natural capital stock enters the stopping region.

To better understand this finding, consider the analogy of selling an asset with a fluctuating

price. Selling only becomes optimal when the price of the asset is high (see e.g. Øksendal

(2003)). The same logic applies here. Because the reward function depends on the natural

capital stock at the time the policy is adopted, the controller waits for favourable realisations

of x(t). The structural parameters of the model give the word favourable its meaning.

For example, if there were no adoption costs (i.e. C = 0), the best policy would be to stop

immediately. Given the deterministic decline in the stock of natural capital, this result is self-

explanatory. In fact, we do not even need to solve the optimal stopping problem to recognise

this. If C = 0, the set U := {(t, x) : Gt(t, x(t)) + LxG(t, x(t)) > 0} is empty. According

to Dynkin’s formula, G(t, x) is superharmonic with respect to (t, x), making it optimal to

stop x(t) immediately (Øksendal, 2003). However, the analysis that follows focuses on the

volatility parameter σx.

Proposition 2. The critical value x∗ triggering policy adoption features:

∂x∗

∂σx
> 0.

In addition, ∀(t, x) ∈ R+ × (0, x∗), the value function features:

∂V(t, x(t))
∂σx

> 0.
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Proof. Immediate computations from Proposition 1. □

The policy adoption threshold increases as the state variable becomes more volatile. This

is reminiscent of the incentive to wait that arises with irreversible investment decisions. In

problem (1)-(2), the decision maker has the option to stop process x(t) at any future time t,

whose value is V(t, x(t)). Said differently, exercising the option (i.e. stopping the process) is

an irreversible decision, with opportunity cost equal to V(t, x(t)). On the contrary, inaction

over any small time interval only involves a continuous change in x(t). Therefore, the higher

the volatility of the state variable, the larger the opportunity cost of exercising the option, and

hence, the greater the incentive to wait rather than to adopt the policy now.

3. OPTIMAL STOPPING UNDER PARTIAL INFORMATION

The optimal stopping problem (1)-(2) assumed that the controller perfectly observed the

natural capital stock at each instant. However, measuring something as complex as natu-

ral capital is hard. Since there is no simple, granular, universal metric, policy makers often

rely on proxy signals (Dasgupta, 2021). Therefore, I now drop the full information assump-

tion. The controller no longer observes the natural capital stock directly, but must make an

inference about it by combining a noisy signal with her own past beliefs.

3.1. Set up. Suppose now the decision maker no longer directly observes x(t), but only a

disturbed version of the state:

x̂(t) = λlogx(t) + σsŴ(t),

where λ ∈ R+, σs ≥ 0, and Ŵ(t) is a white noise. Introducing s(t) =
∫ t

0 x̂(u)du yields the

standard stochastic integral representation:

ds(t) = λlogx(t)dt + σsdB(t), s(0) = 0, (5)
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where B(t) is a 1-dimension Brownian motion. As an example, if x(t) represents the state of

global biodiversity, then s(t) could be one of the biodiversity indicators that monitor biodi-

versity change, such as the Living Planet Index, the Biodiversity Intactness Index or the Red

List Index (Mace et al., 2018).6

As before, the decision maker can stop process x(t) at any instant t, and obtain the reward

G(τ, x(τ)). However, her choices are now based on the signal s(t), as the state x(t) is not

revealed and can only be inferred through its effects on the drift of s(t). Formally, the decision

maker faces the optimal stopping problem under partial information:

V(t, s) = sup
τ≥t,F s

t −adapted
EtG(τ, x(τ)), (6)

The optimal stopping time must be adapted to the filtration generated by s(t), F s
t . That is, the

decision maker must decide whether to stop process x(t) based only on the history of s(t).7

As Ludkovski (2009) explains, partial information problems like (6) feature two particular

difficulties. First, the signal s(t) does not reveal the eventual reward of stopping the process

(i.e. the reward function is not adapted to F s
t ). Second, the signal s(t) is not Markovian

with respect to F s
t . The next subsection tackles these difficulties, and presents the numerical

scheme used to solve the partial information model.

3.2. Solution. Solving the optimal stopping problem under partial information requires a

two-step inference/optimisation approach. The first filtering step transforms it into an equiv-

alent full information optimal stopping problem. The second step solves the latter problem

using standard techniques.

3.2.1. Filtering. Define z(t) = logx(t). The Ito formula yields:

dz(t) = (δ − σx

2
)dt +

√
σxdW(t). (7)

Moreover, z(0) is normally distributed, since x(0) is log-normally distributed. In addition,

using the definition of z(t) eq.(5) becomes:

ds(t) = λz(t)dt + σsdB(t). (8)

6Please refer to chapter 2 in Dasgupta (2021) for more details on these indexes.
7In the previous section the optimal stopping time was adapted to the filtration of the state itself.
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Crucially, (7) and (8) are a pair of linear stochastic differential equations, and hence fit into the

Kalman-Bucy filter framework. Therefore, by Theorem 10.3 in Liptser and Shiryaev (2000),

z(t)|F s
t ∼ N (m(t), P(t)), where

dm(t) =
(

δ − σx

2

)
dt +

λP(t)
σs

dW̄(t), (9)

ds(t) = λm(t)dt + σsdW̄(t), (10)

dP(t)
dt

= σx −
λ2P(t)2

σ2
s

, (11)

and W̄(t) is a 1-dimension Brownian motion. The initial values m(0) ∈ R and P(0) ≥ 0

are given. In sum, conditional on the history of the signal s(t), variable z(t) is normally

distributed with known mean and variance.

To transform the partially observable optimal stopping problem (6) into a fully observable

one, I follow Bertsekas (1995) (see also Zhou (2013) and Ludkovski (2009)). Because the pair

(m(t), P(t)) provides sufficient statistics for the conditional distribution of z(t)|F s
t , I can com-

pute the expected reward from stopping the process x(t) conditional on F s
t

Et [G(t, x(t))|F s
t ] = Et

[
e−ρt

(
x(t)α

α
− C

)
|F s

t

]
,

= Et

[
e−ρt

(
eαz(t)

α
− C

)
|F s

t

]
,

=
∫ ∞

−∞
e−ρt

(
eαu

α
− C

)
ϕ(u)du,

≡ g(t, m(t), P(t)), (12)

where ϕ(·) is the normal density probability function with mean m(t) and variance P(t).

Therefore, problem (6) reduces to the fully observable optimal stopping problem:

V(t, m(t), P(t)) = sup
τ≥t,F s

t −adapted
Etg(τ, m(t), P(t)), (13)

where m(t) and P(t) follow equations (9) and (11), respectively. The conditional variance

P(t) is deterministic and, fortunately, accepts the following closed-form solution:

P(t) = −P∗
1 + P(0)+P∗

P(0)−P∗ e
2
√

σxλ
σs t

1 − P(0)+P∗

P(0)−P∗ e
2
√

σxλ
σs t

, (14)
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FIGURE 3. Graphical analysis of the Riccati equation (11)

P(t)

dP(t)
dt

−σs
λ

√
σx

σs
λ

√
σx

σx

t

P(t)

P∗

where P∗ = σs
λ

√
σx. Hence, the optimal stopping problem (9)-(13) only has two dimensions:

t and m(t). Before attacking this problem, let us explore the dynamics of P(t). Since eq.(14)

is not particularly enlightening, Figure 3 offers a graphical analysis. The left panel plots dP(t)
dt

versus P(t), revealing two fixed points: ±σs
λ

√
σx. The positive fixed point is clearly stable,

since the slope of the function is negative at that point. As a result, small disturbances away

from it will be eliminated in time. The opposite is true of the negative fixed point. In this

case, any disturbance, however tiny, grows in time.

In my set-up, P(t) represents a conditional variance, which is always positive. Therefore, in

the relevant domain, (0, ∞), P(t) always approaches the stable fixed point P∗ = σs
λ

√
σx.8 For

example, if P(0) < P∗, the derivative dP(t)
dt decreases over time, and so P(t) is concave down

as it asymptotes to the horizontal line P = P∗ (right panel in Figure 3). By the same token, if

P(0) > P∗, P(t) decreases toward P∗ and is concave up.

The dynamics of P(t) suggest time-varying effects of partial information on the optimal stop-

ping strategy. Once P(t) has converged to P∗, only the level of uncertainty surrounding the

estimated state might affect the optimal adoption threshold. However, during the transi-

tion period when P(t) approaches P∗, changes in uncertainty could play a role too. To better

understand these effects, I move on to the second step of the solution procedure.

3.2.2. Optimisation. Like the full information baseline, problem (9)-(13) can be reduced to

solving a partial differential equation with a free boundary condition dividing the state space

into a continuation region and a stopping region. In the current setup, the value function

is characterised by the quasi-variational inequality (see, for instance, theorem 5.2.1 in Pham,

8Applying L’Hôpital’s rule in eq.(14) also shows that, in the relevant domain, limt→∞ P(t) = P∗.
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FIGURE 4. Graphical illustration of the optimal stopping strategy.

Time

Es
tim

at
ed

 st
at

e

Continuation region

Stopping region

Constant uncertainty

Time

Continuation region

Stopping region

Decreasing uncertainty, P(0) > P *

Time

Continuation region

Stopping region

Increasing uncertainty, P(0) < P *

Notes. Continuation and stopping regions obtained by solving eq.(15). To the best of my knowledge, these
boundaries hold for any calibration of the model.

2009, or Proposition 2 in Ludkovski (2009)):

max [Vt(t, x(t)) + LmV(t, x(t)), g(t, m(t), P(t))− V(t, x(t))] = 0, (15)

where LmV(t, x(t)) =
(
δ − σx

2

)
Vm(t, x(t))+ λ2

2σ2
s

P(t)2Vmm(t, x(t)), and P(t) is given by eq.(14).

Unfortunately, eq. (15) does not accept a closed-form solution. Therefore, I follow Brandi-

marte (2013) and solve it using an explicit finite difference scheme. Appendix D describes the

implementation of this numerical technique and confirms its accuracy.

Before discussing some numerical examples, let me illustrate the continuation and stopping

regions obtained by solving eq.(15). As shown in Figure 4, if the level of uncertainty is con-

stant (because P(0) = P∗), then the adoption threshold is constant too. However, if the level

of uncertainty changes over time (because P(0) ̸= P∗), then the adoption threshold changes

too. To the best of my knowledge, these insights remain true under any model calibration.

When uncertainty declines over time (because P(0) > P∗), waiting leads to more accurate in-

ferences of the natural capital stock. This learning opportunity raises the adoption threshold at

the beginning of the time horizon. As uncertainty gradually declines towards its equilibrium

value, this learning opportunity weakens, resulting in a lower adoption threshold. Once un-

certainty stabilises, the adoption threshold becomes constant. The same logic applies when

uncertainty rises over time (because P(0) < P∗). Here the uncertainty linked to the inference

process increases over time. Therefore, waiting at the beginning of the time horizon becomes

less attractive, generating an upward path for the adoption threshold.
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3.3. Numerical examples. Let me begin by introducing the baseline parametrisation: T =

30, α = 0.6, ρ = 0.15, δ = −0.01, C = 0.5, λ = 1, σs ∈ [0.5, 1.5] and σx ∈ [0.5, 1.5]. This

parametrisation, while arbitrary, facilitates the numerical analysis and yields some desirable

features. For example, it considers one time unit as 3 years, implying a 5% annual interest

rate and ensuring that ρT is closed to 0. Furthermore, it leads to E[x(T)]
E[x(0)] ≈ 0.75. Additionally,

it guarantees that P(t) gradually converges to its long-term equilibrium, reaching it after 9

years (i.e. roughly at t = 3). Lastly, it satisfies Assumption 1. Of course, alternative parame-

terisations could be used; nevertheless, the discussion below remains valid regardless of the

specific parameterisation.

3.3.1. The role of σs. Here is the paper’s first key message: a noisy signal lowers the adoption

threshold. Indeed, noise blurs the inference process, prompting the controller to lower the

threshold to at least mitigate losses due to the deterministic decline in the natural capital

stock. For simplicity, this subsection sets σx = 1, and hence P∗ = σs.

First, suppose P(0) = P∗, so that the uncertainty associated with the estimated state is con-

stant. The left panel in Figure 5 plots the optimal adoption threshold against the volatility

parameter of the signal, σs, confirming the anticipated negative link. The mathematical ratio-

nale is as follows. As detailed in Appendix C, the reward function g(t, m(t), P(t)) increases

in P∗, and hence, in σs. As a result, raising σs directly shrinks the continuation region, for the

constraint V(t, m(t), P(t)) ≥ g(t, m(t), P(t)) binds more easily.

Assume now P(0) = 1 ̸= P∗. Then the uncertainty linked to the inference process, and hence

the adoption threshold, changes over time as P(t) approaches P∗. The right panel in Figure 5

plots the adoption threshold against σs at t = 0 when P(t) ̸= P∗ and at t = 4 when P(t) ≈ P∗.

In either case, the key message still holds true: the noisier the signal, the lower the threshold.

In addition, σs = 0.5 lowers the adoption threshold over time, while σs = 1.5 raises it. Figure

4 anticipated the logic. When σs < 1, P(0) > P∗, so the uncertainty linked to the inference

process decreases over time. Waiting provides a learning opportunity, thus raising the policy

adoption threshold early on. In contrast, when σs > 1, P(0) < P∗, so uncertainty increases
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FIGURE 5. Threshold x∗ as a function of volatility parameter σs.
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converges to P∗ at around t = 3.

over time. Waiting becomes less appealing, lowering the policy adoption threshold early on.

Lastly, when σs = 1, P∗ = P(0), and the threshold is constant.

All told, whether the conditional variance P(t) changes over time has no impact on the pa-

per’s first key message. However, this changes when I analyse the volatility parameter σx.

3.3.2. The role of σx. Here is the paper’s second key message: the interaction between the volatil-

ity of the natural capital stock and the inference process gives rise to new effects that are absent in the

full information baseline. Under partial information, increasing σx results in a less predictable

natural capital stock, which in turn amplifies the uncertainty associated with the inference

process. As a result, raising σx can produce significantly different effects on the adoption

threshold compared to what is observed in the full information baseline. For simplicity, this

subsection sets σs = 1, and hence P∗ = σx.

As before, first assume that P(0) = P∗. In this case, the left panel of Figure 6, which plots the

threshold against σx, reveals that the main finding from the full information baseline remains

true. The higher the volatility of the natural capital stock, the higher the threshold. In other

words, under a constant conditional variance P(t), the effects of σx on the threshold remain

monotone. However, partial information weakens the effects of σx. This occurs because if



OPTIMAL TIMING OF ENVIRONMENTAL POLICY UNDER PARTIAL INFORMATION 19

FIGURE 6. Threshold x∗ as a function of volatility parameter σx.
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σs → ∞, and hence, P∗ → ∞, then g(t, m(t), P∗) → ∞, making it optimal to stop the process

immediately regardless of the value of σx.

Now, suppose P(0) = 1 ̸= P∗. The middle panel plots the adoption threshold against σx

at two different dates: t = 0 and t = 4 when P(t) ≈ P∗. Crucially, raising σx reduces

the adoption threshold at the beginning of the time horizon, but increases it later on. For

example, at t = 0, the continuation region shrinks from (0, 0.31) to (0, 0.26) as σx goes from

0.5 to 1.5. In contrast, at t = 4 the continuation region expands from (0, 26) to (0, 30).

Proposition 2 stated that increased volatility always raised the adoption threshold in the full

information baseline. Hence, this middle panel shows that partial information can invert the

effect on the adoption threshold from raising the volatility of the state variable.

Again, the intuition is illustrated by Figure 4. When σx < 1, P∗ < P(0), so the uncertainty

surrounding the estimated state declines over time. Waiting offers a learning opportunity,

which raises the adoption threshold early on. The right panel in Figure 6 illustrates these

dynamics. On the other hand, when σx > 1, P∗ > P(0), so the uncertainty surrounding

the estimated state increases over time. Waiting leads to noisier estimates, thus reducing the

adoption threshold at t = 0.
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TABLE 1. Summary of the effects of changes of volatility parameters on the
adoption threshold

∆x∗
∆σs

|∆σs>0
∆x∗
∆σx

|∆σx>0
Constant uncertainty, P(0) = P∗ < 0 > 0
Changing uncertainty, P(0) ̸= P∗ < 0 Time-varying

3.3.3. Summary. Table 1 condenses the results from this section. In the next section, I shall

prove that the two key messages arising from the table (and emphasised in italics above) also

hold in a finite horizon setting.

4. OPTIMAL STOPPING IN A FINITE TIME HORIZON

Thus far, I have considered an infinite horizon model. As a result, if the state x(t) evolved

unfavourably, the decision maker could let it run forever to obtain a zero reward. This as-

sumption allowed me to derive an analytical solution for the full information baseline and

simplified the intuitions in the partial information setting. However, an infinite horizon

might not always be a satisfactory assumption, since some environmental policies do require

eventual adoption.

Therefore, this section introduces a finite time horizon T < ∞ at which the decision maker

must halt process x(t) if she has not already done so. Formally, the optimal stopping problem

is:

V(t, x(t)) = sup
τ≤T

EtG(τ, x(t)) = sup
τ≤T

Ete−ρτ

[
x(τ)α

α
− C

]
. (16)

As before, under full information the decision is based on the history of x(t), and under par-

tial information it is based on the history of s(t). Neither of these problems accepts a closed-

form solution. Hence, I use the finite difference method mentioned earlier after adapting the

boundary conditions to the new modelling assumption. Unless otherwise stated, I maintain

the baseline parametrisation, though I now set T = 1, implying a finite time horizon of three

years.

First, I examine the shift from T → ∞ to T < ∞ in the full information baseline. Then, I verify

that the key messages from the previous section hold in the finite horizon setting.

4.1. Full information baseline. Figure 7 solves the full information setup and compares it

with its infinite horizon counterpart. The left panel shows that the value function is no longer

bounded by a minimum of zero; it can now dip into negative territory. I mentioned the
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FIGURE 7. Value function and policy adoption threshold in full information baseline
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intuition earlier: under an infinite time horizon, the decision maker’s payoff cannot fall below

zero, but under a finite time horizon the payoff can be negative if she reaches T with a low

x(t).

It follows that the adoption thresholds will be lower in the finite horizon setting. Since the

reward of inaction can now be negative, the decision maker is less inclined to wait for high

values of x(t). As T gets closer, this effect intensifies, thus shrinking the continuation region

over time. Nash bargaining provides a useful metaphor for understanding these dynamics.

When a player’s outside option declines, her bargaining position deteriorates, making her

more willing to accept terms she might have rejected with a better outside option. The same

logic applies here.

Turning to the volatility parameter σx, Figure 8 reveals that its effect on the adoption thresh-

old now depends on the curvature of the payoff function. When the latter approaches linear-

ity (e.g. α = 0.99), raising σx increases the adoption threshold, leading to the same outcome

as with an infinite horizon. However, as the payoff function becomes increasingly concave,

the decision maker becomes increasingly risk-averse, and raising σx reduces the threshold.

The α at which the effect of σx on the threshold changes sign is roughly 0.85.

Conceptually, Figure 8 recalls the literature on precautionary behaviour. Higher values of σx

make extreme realisations of x(t) more likely. A nearly risk-neutral decision maker might
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FIGURE 8. The effects of the volatility parameter σx on the adoption threshold
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be inclined to try her luck and wait for a very good outcome before halting the process.

Instead, a more risk-averse decision maker might lower her adoption threshold to reduce the

chances of bad outcomes. That the worst possible realisation was bounded by zero under an

infinite horizon could explain why an increase in σx always increased the adoption threshold.

Specifically, the lower bound on the payoff limited the negative effects of volatility, but left

the positive effects untouched.

4.2. Partial information setting. I now establish that the paper’s two main messages remain

valid with a finite horizon. First, going from T → ∞ to T < ∞ does not alter the first insight:

a noisy signal always reduces the continuation region. This holds true regardless of whether

the uncertainty related to the inference process changes over time. The underlying logic is

unaffected by the time horizon: noise blurs the inference process, prompting the controller to

lower the threshold to insure against the deterministic decline in natural capital. Supporting

figures can be found in Appendix E.

I now turn to the paper’s second insight: the interaction between the volatility of the natu-

ral capital stock and the inference process gives rise to new effects that are absent in the full

information baseline. Under T < ∞, the impact on the threshold from changes in σx is less

clear-cut than under T → ∞. In fact, the adoption threshold in the full information baseline

no longer converges to an equilibrium value. Risk aversion also plays an important role. Nu-

merical examples show that interactions among α, σx, and the filtering process can affect the
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TABLE 2. Adoption threshold at t = 0 as a function of parameters

Full information Partial information
α σx Threshold (x∗) α σs σx Threshold (em∗

)
0.90 0.50 0.52 0.90 0.50 0.50 0.57
0.90 1.50 0.56 0.90 0.50 1.50 0.48

0.90 1.00 0.50 0.39
0.90 1.00 1.50 0.33

0.95 0.50 0.62 0.95 0.50 0.50 0.65
0.95 1.50 0.74 0.95 0.50 1.50 0.61

0.95 1.00 0.50 0.46
0.95 1.00 1.50 0.41

adoption threshold differently, contingent on the values assigned to the model parameters.

Therefore, I cannot provide definitive statements, as I did for the infinite horizon setting, such

as ‘raising σx always reduces the adoption threshold at the beginning of the time horizon, but

increases it later on.’

Nevertheless, my second insight remains perfectly valid under T < ∞. Increasing σx can

still reduce the adoption threshold in the partial information setting, but increases it in the

full information baseline. Table 2 provides a few examples featuring this phenomenon. In all

cases, P(0) ̸= P∗. As with an infinite horizon, a time-varying conditional variance appears to

be a necessary condition for the effects of σx on the threshold to differ in the partial and full

information models.

5. CONCLUDING REMARKS

I study the optimal timing of environmental policy when the stock of natural capital is

unobserved and can only be imperfectly measured. In reality, however, most environmental

measures are not all-or-nothing decisions; they can be continuously adjusted post-adoption.

Therefore, jointly considering the optimal adoption timing and the intensity of environmental

measures under partial information is a fruitful avenue for future research.
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APPENDIX A. ON THE REWARD FUNCTION G(t, x(t))

For mathematical tractability, my model uses a Mayer performance measure, where the

reward function G(t, x(t)) only depends on the stock of natural capital at the stopping time

τ. However, an alternative Lagrange performance measure could involve an integral process

of the form
∫ τ

0 L(x(t))dt, with L : R+ → R+.

This appendix argues that, given the model’s structure, these two approaches need not differ

significantly. Since policy adoption freezes the natural capital stock at its current level, the

dynamics of x(t) can be described as

dx(t) =

δx(t)dt +
√

σxx(t)dW(t) if t ≤ τ,

0 if t > τ.

Here τ ∈ (0, T] is the stopping time, and T is the exogenous deadline for policy implemen-

tation. Unlike the main text, the controller selects τ to maximize an infinite sum of future

utilities:

V = E

∫ ∞

0
e−ρtu(x(t))dt − e−ρτC,

where u(·) : R+ → R+ captures the utility flows derived from the stock of natural capital,

x(t), at each instant. Inserting the dynamics of dx(t) yields

V = E

∫ τ

0
e−ρtu(x(t))dt︸ ︷︷ ︸
Lagrange

+Ee−ρτ

[
u(x(τ))

ρ
− C

]
︸ ︷︷ ︸

Mayer

.

Therefore, maximising future utilities is equivalent to optimising a combination of Lagrange

and Mayer performance measures.

Nonetheless, the stopping time τ, and hence the upper limit of the integral process, are

bounded by T. Hence, for relatively small values of T, the Mayer performance measure

should dominate the reward function V. In such cases, neglecting the Lagrange term appears

a reasonable assumption.

Figure 9 confirms this intuition. It shows that as T decreases, the value function resulting

from considering only a Mayer performance measure (blue line) converges towards the value
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FIGURE 9. Value function V under different terminal times T
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Notes. Value function V plotted against state variable, x. The parameter values are: α = 0.90, δ =
−0.1, σ = 1.0, ρ = 0.5 and C = 0.5.

function derived from considering a combination of Lagrange and Mayer performance mea-

sures (red line).9 When T = 0.5, both value functions are nearly identical. It is worth noting

that with the discount rate used here (ρ = 0.5), the time horizon (0, 0.5) can be interpreted

as spanning 20 quarters with an annual interest rate of 4%, which is not unreasonably short.

Even for larger terminal times, the disparities between the value functions remain modest.

All told, ignoring the Lagrange performance measure is not an overly strong assumption.

APPENDIX B. PROOF OF PROPOSITION 1

Considering the partial differential equation Vt + LxV = 0, let me seek a solution in the

form of v(t, x) = e−ρtxµ. This transforms the equation into the following expression:

0 = −ρ + µδ +
1
2

σxµ(µ − 1),

which has two solutions for µ. The first solution is positive:

µ1 =
(σx

2 − δ) +
√
(δ − σx

2 )
2 + 2ρσx

σx
,

9To obtain these value functions, I solve the corresponding optimal stopping problems numerically using
the finite difference scheme in Appendix D.



28 PABLO GARCIA

and the second solution µ2, which arises from using a minus sign in front of the square root,

is negative. The general solution for v can then be expressed as: v(t, x) = e−ρt (c1xµ
1 + c2xµ

2
)
,

where c1 and c2 are two arbitrary constants.

Next, I guess that the continuation region A has the form

A =
{
(t, x) ∈ R+ × R+ : 0 < x < x∗

}
,

for some x∗ > 0. Now, for v(t, x) to be bounded as x → 0, c2 must be equal to zero. Then I

have two constants to determine {c1, x∗} and two boundary conditions:

c1x∗µ1 =
x∗α

α
− C,

c1µ1x∗µ1−1 = x∗α−1.

Solving this system of equations yields c1 = x∗α−µ

µ and x∗ =
(

αµC
µ−α

) 1
α . By substituting c1 back

into v(t, x), I obtain the final expression: v(t, x) = e−ρt x∗α

µ1

( x
x∗
)µ1 for x ∈ A. In addition, if

x /∈ A, the controller stops immediately, and the value function equals the payoff function.

This is my candidate for the optimal solution. As mentioned in the main text, however, a

verification theorem is required. I rely on theorem 4.28 in Seierstad (2009), which is closely

related to theorem 10.4.1 in Øksendal (2003). My candidate solution satisfies the following

properties:

• v(t, x) is twice continuously differentiable everywhere and Lipschitz continuous in

[0, ∞).

• The equation Vt + LxV = 0 holds in A. Moreover, v(t, x∗) = g(t, x∗).

• Since v(t, 0) > G(t, 0) and vx(t,x)
Gx(t,x)

< 1 ∀x ∈ (0, x∗), v(t, x) > G(t, x) in A. By construc-

tion, furthermore, v(t, x) = G(t, x) in the stopping region B.

• vt(t, x) + Lxv(t, x) < 0 in B; that is, Gt(t, x) + LxG(t, x) < 0 for x > x∗. To see this,

note that Gt(t, x) + LxG(t, x) = e−ρt [ρC −
(
ρ − δ + (1 − α)σx

2

)]
:= Ω(t, x). Under the

parameter restriction, µ < α
1−α , Ω(t, x∗) < 0. Given that Ωx(t, x) < 0 ∀x, I have

Gt(t, x) + LxG(t, x) < 0 in B, as initially claimed.

• Both limt→∞ G(t, x(0)) and limt→∞ v(t, x(0)) equal 0. For some positive constants β,

cv, cG, d1, d2, d3, d4, for all (t, x) ∈ R+ × (0, x∗), |vx(t, x)| ≤ cve−βt, and for all (t, x) ∈
R+ × R+, |Gx(t, x)| ≤ cGe−βt, |√σxx| ≤ d1 + d2 |x|, |δx| ≤ d3 + d4 |x|, β > d4.
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Therefore, my candidate solution satisfies all the conditions required by the verification the-

orem 4.28 in Seierstad (2009). As a result, v(t, x) = V(t, x) and τ∗ = inf {t ∈ R+ : x ≥ x∗} is

optimal.

APPENDIX C. ON THE LINK BETWEEN P AND g(t, m, P)

I now show that the payoff function g(t, m, P) increases in P. As stated in the main text,

g(t, m, P) is given by:

g(t, m, P) =
∫ ∞

−∞
e−ρt f (u)ϕ(u)du,

where f (u) = eαu

α − C and ϕ(u) is the normal probability density function with mean m and

variance P.

Consider the following thought experiment. Suppose σs → 0, and hence, P → 0. Then, ϕ(u)

approaches a Dirac delta function centered at m. That is, the probability density function

becomes infinitely peaked at m, so that g(t, m, P) → f (m). Denote that value by g∗. Now,

suppose σs increases slightly. Since ϕ(u) is symmetric, g(t, m, P) now results from equally

weighting the value of f (u) immediately at the left and right of m. Denote that value g∗∗.

Since f (u) is convex, g∗∗ > g∗.

This reasoning holds true for any two values of σs, thus proving that g(t, m, P) increases in P.

APPENDIX D. SOLUTION METHOD: A EXPLICIT FINITE DIFFERENCE SCHEME

Finite difference methods approximate each partial derivative with a quotient; thereby

transforming the functional equation into a set of algebraic equations. I begin by setting up a

discrete grid with respect of t and m. Though the domain for the partial differential equation

reaches +∞ in both dimensions and −∞ in the m-dimension, I must bound it in some way

for computational purposes. Therefore, let T and Mh be large enough numbers playing the

role of +∞ and Ml be a small enough number playing the role of −∞. The grid then consists

of points (t, m) such that:

m = Ml, ∆m, 2∆m, . . . , M∆m ≡ Mh,

t = 0, ∆t, 2∆t, . . . , N∆t ≡ T,

where M and N are positive integers. Approximating the first derivative with respect to m

by a central difference and the first derivative with respect to t by a backward difference
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transforms the first argument of eq. (15) into:

V(t, m)− V(t − ∆t, m)

∆t
+
(

δ − σx

2

) V(t, m + ∆m)− V(t, m − ∆m)

2∆m

+
λ2

2σ2
s

P(t)2 V(t, m + ∆m)− 2V(t, m) + V(t, m − ∆m)

∆m2 = 0. (17)

Setting the right boundary conditions is essential. Based on the insights discussed in the full

information baseline, when m is very large, I expect the policy threshold to have been crossed.

Hence, I have:

V(t, Mh) = g(t, Mh, P).

Similarly, m → −∞ would indicate that the state, x(t), had reached 0. Were that to happen,

x(t) would remain there forever, as it follows a geometric Brownian motion. So the policy

threshold would never be adopted; hence I have

V(t, Ml) = 0.

The last boundary condition follows naturally from the exponential discounting term:

V(T, m) = 0.

In grid notation:

V(T, i∆m) = 0, i = 0, 1, . . . , M,

V(j∆t, Mh) = g(j∆t, Mh, P(j∆t)), j = 0, 1, . . . , N,

V(j∆t, Ml) = 0, j = 0, 1, . . . , N.

Lastly, I need to consider the max operator in eq. (15) related to the free boundary condition

arising from the possibility of early policy adoption. Hence, the value function at each grid

point cannot be lower than the immediate reward if the policy is adopted:

V(j∆t, i∆m) ≥ g(j∆t, i∆m, P(j∆t)).

If I evaluate eq. (17) at t = N∆t, V(N∆t, m), V(N∆t, m − ∆m) and V(N∆t, m + ∆m) are

known from the boundary conditions; the only unknown value is V((N − 1)∆t, m), which

can be obtained as an explicit function of known values. Therefore, rewriting eq. (17), I get
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FIGURE 10. Comparison of value functions and adoption thresholds.
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Notes. Value functions are plotted against the state variable (x in the full information baseline and
em in the partial information setup) when t = 0. The parameter values used in the exercise are:
dt = 6e − 3, dm = 0.08, Mh = −0.5, Ml = −4.6, T = 30, α = 0.60, ρ = 0.15, δ = −0.01, C = 0.5,
λ = 1, σs = 0.01, σx = 1 and P(0) = P∗.

an explicit scheme:

V(t − ∆t, m) = α1(t)V(t, m) + α2(t)V(t, m + ∆m) + α3(t)V(t, m − ∆m), (18)

for t = N∆t, (N − 1)∆t, . . . , ∆t and m = ∆m, 2∆m, . . . , (M − 1)∆m, where

α1(t) = 1 − λ2P(t)2

2σ2
s

dt
dm2 ,

α2(t) =
∆t
∆y

[(
δ − σx

2

)
2

+
λ2P(t)2

2σ2
s ∆m

]

α3(t) =
∆t
∆y

[
λ2P(t)2

2σ2
s ∆m

−
(
δ − σx

2

)
2

]
.

Imposing the max operator is the final step. After computing V(t − ∆t, m) using eq. (18), I

check for the possibility of policy adoption, and set

V(t − ∆t, m) = max [V(t − ∆t, m), g(t − ∆t, m, P)] .

One technical point deserves further comment. The payoff function g(t, m, P), given by

eq.(12), cannot be written in terms of elementary functions; hence, I approximate it using

a standard quadrature method.
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FIGURE 11. Policy adoption threshold as a function of volatility parameter σs
when P(0) = P∗
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Notes. Adoption threshold as a function of σs in the partial information setup under a finite time
horizon. The uncertainty linked to the inference process is constant, since P(0) = P∗.

I conclude by testing the accuracy of the numerical scheme. If σs → 0 and P(0) = P∗,

the uncertainty surrounding the estimated state is nil, making the partial information setup

equivalent to the full information baseline. Figure 10 compares the closed-form solution for

the value function and the adoption threshold in the full information baseline with their

numerical counterparts in the partial information setup under σs = 0.01 and P(0) = P∗.

Specifically, the value functions are plotted against the state variable (x in the full information

baseline and em in the partial information setup) at t = 0. The numerical solution does a

great job at both approximating the value function and finding the boundary between the

continuation and the stopping regions.

APPENDIX E. IMPACT OF σs ON THE ADOPTION THRESHOLD WITH A FINITE TIME HORIZON

As stated in the main text, going from T → ∞ to T < ∞ does not alter the first insight:

a noisy signal always reduces the continuation region. Figures 11 and 12 confirms that this

holds true regardless of whether the uncertainty related to the inference process changes over

time.
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FIGURE 12. Policy adoption threshold as a function of volatility parameter σs
when P(0) ̸= P∗
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Notes. Adoption threshold as a function of σs in the partial information setup under a finite time
horizon. The uncertainty linked to the inference process changes over time, since P(0) ̸= P∗.
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