FISCAL COMPETITION AND TWO-WAY MIGRATION

PATRICE PIERETTI, GIUSEPPE PULINA AND SKERDILAJDA ZANAJ

MARCH 2024
Fiscal competition and two-way migration

Patrice PIERETTI† Giuseppe PULINA‡ Skerdilajda ZANAJ§

Abstract

In this paper, we model two-way migration as the outcome of strategic public policies adopted by competing jurisdictions. We assume that two economies, distinguished by different technological levels, host a continuum of mobile individuals with varying skill levels. To maximize their net revenues, governments compete for mobile workers by taxing wages and providing a public good that enhances firm productivity (public input). We show that the most skilled workers migrate to the technologically advanced economy. However, the government in the less technologically developed economy can retain some of its skilled workers and attract workers from abroad by offering lower taxes or more public inputs. As a result, a two-way migration pattern emerges, driven by governments' strategic policy choices. Finally, the introduction of heterogeneity in population size does not significantly alter the results.

Keywords: Bilateral migration; Tax competition; Heterogeneous skills; Technological gap; Policy competition

JEL Classifications: H20, H32, H54, H87, F22, F60

†We are grateful to Paolo Guarda and Jean-Charles Rochet for their insightful comments and suggestions. We thank Fabrice Collard, Alban Moura, and Emmanuel Thibault for their comments during the ER Seminar at the Banque centrale du Luxembourg. This paper should not be reported as representing the views of the BCL or the Eurosystem. The views expressed are those of the authors and may not be shared by other research staff or policymakers in the BCL or the Eurosystem.

‡Department of Economics and Management, University of Luxembourg - patrice.pieretti@uni.lu.

§Economics and Research Department, Banque centrale du Luxembourg, and Department of Economics and Management, University of Luxembourg - giuseppe.pulina@bcl.lu

§Department of Economics and Management, University of Luxembourg - skerdilajda.zanaj@uni.lu
Résumé non technique

La migration des travailleurs contribue au bon fonctionnement de l’union monétaire. Même avant l’introduction de l’euro, certaines politiques nationales ont visé la migration entre régions (le midi italien, la réunification allemande). Ce n’est qu’en attirant des travailleurs que le Luxembourg a pu bénéficier d’une croissance extraordinaire. Aujourd’hui encore, les flux migratoires au sein de la Grande Région sont sujet à débat. En général, la théorie économique analyse la migration à travers des modèles de décision au niveau individuel, sans prendre en compte les possibles incitations résultant d’une concurrence entre autorités fiscales. D’autre part, la modélisation d’une telle concurrence conduit généralement à une migration dans une seule direction.

Ce papier vise à combler cette lacune en abordant les questions suivantes : la migration bidirectionnelle peut-elle résulter de la concurrence entre juridictions ? Quelles en sont les conditions nécessaires ? Dans ce contexte, quelles sont les meilleures stratégies des concurrents ? La taille de l’économie est-elle un facteur pertinent ?

Pour répondre à ces questions, nous proposons un modèle basé sur la théorie des jeux qui génère une migration bidirectionnelle à partir des décisions stratégiques prises par des autorités fiscales concurrentes. Nos principales conclusions sont les suivantes : premierement, indépendamment de son niveau de développement technologique, toute économie peut être simultanément l’origine et la destination de flux migratoires en fonction de son niveau d’imposition et des dépenses publiques. Deuxièmement, dans une économie technologiquement moins développée, la stratégie optimale peut comporter un avantage fiscal mais celui-ci ne s’accompagnera pas d’une augmentation des dépenses publiques. L’instrument à privilégier dépend de l’ampleur de l’écart technologique. Enfin, une taille différente des économies concurrentes n’altère pas significativement les résultats.

En conclusion, notre modèle met en évidence l’importance des choix politiques pour expliquer les flux migratoires et souligne que la concurrence entre autorités fiscales peut encourager la concentration des travailleurs qualifiés dans certaines juridictions.
1 Introduction

This paper develops a theoretical framework in which two-way migration (simultaneous inflows and outflows) results from strategic decisions by governments seeking to attract or retain mobile workers.

The existing empirical literature has primarily focused on estimating migration flows based on source and destination country characteristics (bilateral migration), which encompass two-way migration. Some studies have employed econometric analysis of aggregate data using identification strategies consistent with individual-level migration decision models (Beine et al., 2011; Beine et al., 2016; Grogger & Hanson, 2011; Ortega & Peri, 2016). Notably, Beine et al. (2011) and Grogger & Hanson (2011) provide compelling evidence of the significant impact of wage differences on bilateral migration flows. Moreover, Beine et al. (2016) document substantial dynamics in international migration across various corridors, underscoring the need for analyzing determinants using dyadic-bilateral data. These contributions employ econometric analyses on aggregate data, aligning with underlying individual-level migration decision models, but do not consider the possible effects of country policies on migration flows.

Public economics literature has traditionally focused on unilateral migration flows, with limited attention given to two-way migration characterized by simultaneous inflows and outflows (Kleven et al., 2013; Kleven et al., 2014; Bucovetsky, 2011; Djajić et al., 2012; Simula & Trannoy, 2010, 2012; Kessing et al., 2020; Gabszewicz et al., 2016). Economic disparities between countries often serve as a leading driver of migration flows, with individuals seeking better economic opportunities in countries with higher prospects. As a result, the public economics literature on migration has primarily focused on studying unilateral flows from developing to developed countries. This literature explores the determinants and effects of unilateral migration, often emphasizing the role of public policies as migration triggers. However, to the best of our knowledge, with the exception of Kreickemeier & Wrona (2017), no other paper has proposed a theoretical framework that analyzes two-way migration where a country simultaneously serves as a sender and a receiver of migrants.

Despite the progress made by these two strands of literature, several questions remain unanswered. This paper aims to bridge this gap and addresses the following questions: Can two-way migration result from inter-jurisdictional competition between heterogeneous countries? Under what conditions can two-way migration emerge? In this context, what are the best policy responses of competing countries? Is country size a relevant factor?

To address these questions, we propose a model that generates two-way migration in response to
strategic policy decisions made by competing governments. More specifically, our framework considers two countries, each with a continuum of mobile workers with individual skill levels and a government setting tax and expenditure on a public input to maximize net revenues.\footnote{See Hauptmeier \textit{et al.} (2012) for some empirical evidence on international competition with taxes and public input.} The public input may be any public expenditure that raises worker productivity (communication and transport infrastructure, but also healthcare and education). We assume one country is more technologically advanced than the other. By examining the interplay between public policies, firms’ productivity, and technology differences, our model sheds light on the dynamics of two-way migration and provides insights into its determinants.

Our main findings are as follows. First, we show that both advanced and lagging countries can simultaneously be origin and destination in a two-way migration pattern, given certain levels of taxes and public expenditure. As expected, workers with the highest skills migrate to the technologically advanced country. However, the lagging country may respond by lowering taxes or raising expenditure to create a policy advantage, which represents workers’ relative benefit from migration. If this advantage exceeds the cost of migration, the lagging country is able to retain some of its skilled workers and also attract less-skilled foreign workers.

Second, our analysis shows that while it may be optimal for the government in the technologically lagging country to provide a policy advantage, it is not optimal for it to simultaneously set lower taxes and more expenditure on the public input compared to the other country. The optimal policy to implement depends on the extent of the technological gap between the two countries. If the gap is small, optimal policy for the government in the lagging country is to spend on the public input more than its counterpart, while allowing the technologically advanced country to attract high-skilled workers via low taxation. This approach results in a positive net migration for the lagging country. If the technological gap is large, then tax competition is less intense, so the best strategy for the government in the lagging country is to provide lower taxes. However, this strategy leads to a negative net migration as the lagging country loses more workers than it attracts.\footnote{These results align with empirical findings showing more prominent and more advanced countries to be attractive despite their high taxation (Marceau \textit{et al.}, 2010).} Generally, we find that the average skill of migrant workers increases with the technological gap, consistent with empirical work from Borjas (1987).

Finally, introducing heterogeneity in country size does not significantly alter the results. A smaller lagging country is more likely to provide lower taxes but less likely to set higher expenditure on the public input, while the inverse is true for a larger country. Nevertheless, we show a small lagging
country retains a larger portion of its workforce and attracts more foreign workers compared to a big lagging country.

Our model highlights the importance of policy decisions in explaining migratory flows. Moreover, our results are in line with the empirical findings of Grossmann & Stadelmann (2011, 2012), who show that countries attracting or retaining skilled workers also have higher public investments. Our findings also suggest that technologically advanced countries may substitute less skilled workers with higher skilled workers. This highlights that interjurisdictional competition has the potential to accentuate international differences in labor force composition.

The paper is organized as follows. The next Section provides more details regarding the related literature. Section 3 presents the model and Section 4 derives the main results. Section 5 introduces population size asymmetry, Section 6 concludes.

2 Related Literature

Our paper contributes to the theoretical literature in public economics that analyzes the policy determinants of migration. Gabszewicz et al. (2016) develop a two-country model with asymmetries in size and productivity. The countries interact strategically by adjusting wage taxes to compete for mobile labor. Gross wages and productivity differences across the jurisdictions are exogenously given. One finding of the paper is that contrary to the standard result that small countries have lower tax rates than larger countries, this may not be true for income taxation. Our paper differs from Gabszewicz et al. (2016) in several aspects. We consider two-way migration, endogenous wages, and governments not only set taxes but also expenditure on a public input in production.

In Kreickemeier & Wrona (2017), the theoretical model aims to explain the existence of two-way migratory flows of skilled individuals. However, the way they obtain two-way migration is different from ours. In our setting, two-way migration is linked to strategic policy decisions on tax and expenditure on a public input. In Kreickemeier & Wrona (2017), two-way migration results from the fact that labor skills are private knowledge and that emigrating high-skilled workers can separate themselves from low-skilled co-workers. Firms are able to distinguish natives from migrants and the production technology exhibits complementarities between individual skills. It follows that firms efficiently match high-skilled natives with high-skilled migrants, which leads to larger gross wages for skilled labor in the destination country of migrants.

Eggert et al. (2010) present a two-region model in which migration is endogenous. Workers decide
to acquire skills and migrate. Migration is assumed to occur from a poor country to a rich country that is technologically more advanced. One important aim of the paper is to highlight how non-migrants in poor regions may experience brain gain via a higher propensity to acquire human capital induced by the equilibrium effects on wages. However, there is no strategic interaction between the regions and migration is one-way. Kessing et al. (2020) analyze how regional productivity differences and labor mobility shape optimal tax design. A key assumption of their setting is that the productivity of labor is location-dependent. This assumption is like the one we make in our model. Consequently, workers can increase their productivity by migrating from a low- to a high-productivity region. The paper contributes to the theory of optimal taxation when individual productivity is endogenized through migration. Our paper is not concerned with the optimal tax and transfer policies but rather with the impact that strategic decisions on tax and expenditure have on two-way skilled migration.

Djajić et al. (2012) analyze the brain-drain problem in a game-theoretic setting. Within this framework, the host country decides on its immigration policy and the source country optimally provides higher education and training. This is similar to our setting, where the policies of host and source countries interact through tax and expenditure in the context of skilled-worker migration. However, unlike Djajić et al. (2012) our model allows the emergence of two-way migration.

Finally, our paper can provide theoretical support for the empirical literature analyzing bilateral migration (e.g., Clark et al., 2007, Lewer & Van den Berg, 2008, Grogger & Hanson, 2011, Mayda, 2010, Ortega & Peri, 2016, Simpson & Sparber, 2013, Pedersen et al., 2008, Beine et al., 2011). Until now, this literature has neglected the role of government policies and assumed that migration is generated by wage differentials across countries.

3 The model

Consider two countries, h and f, populated by a continuum of workers with heterogeneous skills s, which are uniformly distributed in an increasing order over the interval $[0, 1]$. Workers’ skills are common knowledge and the distribution densities in countries h and f are $\omega_h = \omega$ and $\omega_f = 1 - \omega$. Densities also capture the population size in both countries, respectively. In the benchmark setting, we consider equal-sized countries by assuming $\omega = \frac{1}{2}$. In each country, the government levies a lump-sum tax on labor income t_i ($i = h, f$) and supplies a public input g_i ($i = h, f$) that raises the productivity

\footnote{We extend the model to asymmetric population size in Section 5.}
of firms operating in its territory. In this paper, we treat taxes and expenditure as strategic variables to attract mobile workers.

A large number of firms operate in each country and produce a homogeneous good \(q_i (i = h, f) \) that is sold at a given price on a competitive market. A firm’s labor productivity in country \(i \), depends on general technological advances (\(\theta \)) that are internationally diffused, on the labor-skill \(s \) used by the firm, and finally on the domestic level of the public input \(g_i \). We assume that there is a one-to-one relationship between one additional unit of the public input and the increase in labor productivity.

We also suppose that the technology is linear in labor \(l_i \) and that each firm hires one type of skill. Thus, in each country \(i (i = h, f) \) the production function of a firm is

\[
q_i(s) = (\theta + (1 + \beta_i) s + g_i) l_i(s),
\]

where \(\theta + (1 + \beta_i) s + g_i \) is firm’s productivity. Set \(\beta_h = 0 \) and \(\beta_f = \beta > 0 \). The coefficient \(\beta \) captures the idea that country \(f \) has a technological advantage relative to country \(h \). This means that a worker of type \(s \) performs better in country \(f \) than in country \(h \). More precisely, workers’ contribution to overall productivity in country \(f \) is \((1 + \beta) s\), while it is just \(s \) in country \(h \). This difference can be explained by the better use of workers’ skills in countries where the organizational environment is more sophisticated and well-managed, improving human performance.

We assume that a large number of firms compete for each skill (the number of firms exceeds the number of workers with each skill). It follows that the market wage rate of skill \(s \) in country \(i = h, f \) will equal \(w_i(s) = \theta + g_i + (1 + \beta_i) s \). As a consequence, an individual of type \(s_h \) migrating from country \(h \) to \(f \) earns \(w_f = \theta + g_f + (1 + \beta) s_h \) in the destination country, rather than \(w_h = \theta + g_h + s_h \) in her home country. For given levels of the public good \(g_h \) and \(g_f \), the higher the technological gap \(\beta \), the greater the incentive for workers to migrate to the technologically advanced jurisdiction.

3.1 Migration flows

Workers of both countries contemplate whether to migrate abroad by comparing after-tax wages net of moving costs between countries. In jurisdiction \(h \) a worker with a skill level \(s_h \) compares the net wage received in \(h \) and \(f \), taking into account a migration cost \(k \). She is indifferent between the two

4 This public input can be material (e.g. transportation and telecommunication infrastructure) or immaterial (e.g. labor market regulation). It is a non-rival good that can be used by all firms in the same jurisdiction.

5 This is a simplifying assumption as in Pieretti & Zanaj (2011).

6 For a similar assumption see Gabszewicz et al. (2016).

7 This is because competition for skills drives firm’s profit \(\Pi_i(s) = (\theta + (1 + \beta_i) s + g_i) l_i(s) - w_i(s) l_i(s) \) down to zero.
locations if
\[\theta + g_h + s_h - t_h = \theta + g_f + (1 + \beta)s_h - t_f - k. \]

Consequently, the indifferent worker in \(h \) has the following level of skills
\[s_h = \frac{(t_f - t_h) + (g_h - g_f) + k}{\beta}, \]
\[(1) \]

where \((t_f - t_h) \) is the international tax differential and \((g_h - g_f) \) the difference in the public input. Note that expenditures in public input have direct effects on gross salaries. In the following, we use \(\Delta_h = (t_f - t_h) + (g_h - g_f) \) as an indicator of attractiveness of country \(h \) resulting from policy decisions. When \(\Delta_h > 0 \), country \(h \) has a policy advantage. Migration from \(h \) to \(f \) is driven by both the technological gap \(\beta \) and the policy advantage. The former reflects a structural feature while the latter results from strategic decisions. When \(0 < s_h < 1 \), all the workers of type \(x \in [s_h, 1) \) move from country \(h \) to country \(f \) because their after-tax wage net of moving cost is higher in the technologically advanced country. Consequently, country \(h \) loses its most skilled workers. In other words, it suffers from a brain drain with country \(f \) attracting the more skilled workers.

According to equation (1), even if neither country has a policy advantage (\(\Delta_h = 0 \)), the most skilled individuals of country \(h \) move to \(f \) provided that the moving cost is smaller than the technological gap \((k < \beta) \). This implies that under perfect mobility \((k = 0) \), country \(h \) loses all its workers, \(s_h = 0 \) if \(\Delta_h = 0 \). However, when the technologically lagging jurisdiction \(h \) has a policy advantage, i.e. \(\Delta_h > 0 \), the migration flow to country \(f \) can be mitigated even under perfect labor mobility. When the advanced country \(f \) has a policy advantage, i.e. \(\Delta_h < 0 \), the lagging country \(h \) does not necessarily lose all its workers, provided that the mobility cost is high enough \((k > \Delta_h) \).

We now turn to the technologically advanced country \(f \) and identify the worker of type \(s_f \) who is indifferent between staying at home and emigrating to country \(h \). For this worker, the after-tax wage in country \(f \) equals that in the foreign location \(h \) after considering the moving cost \(k \)
\[\theta + g_f + (1 + \beta) s_f - t_f = \theta + g_h + s_f - t_h - k. \]

It follows that
\[s_f = \frac{(t_f - t_h) + (g_h - g_f) - k}{\beta}, \]
\[(2) \]

If \(0 < s_f < 1 \), all workers of type \(x \in (0, s_f] \) move from country \(f \) to country \(h \) because their after-
tax wage net of moving cost is higher in the technologically lagging country. In other words, there is a migration flow from country \(f \) despite the technological advantage, \(\beta > 0 \). In this case, country \(f \) loses its less skilled workers. A necessary condition for this to occur is that the technologically lagging country has a sufficiently large policy advantage, \(\Delta_h > k \geq 0 \). Otherwise, we would observe unidirectional migration, \(s_h > 0 \) and \(s_f = 0 \). Workers move from the technologically advanced country \(f \) only if the total advantage in taxes and/or public input of country \(h \) is sufficient to compensate them for the moving cost.\(^8\)

The following proposition summarizes the above statements.

Proposition 1 (i) If an equilibrium with two-way migration exists, i.e., \(0 < s_h < 1 \) and \(0 < s_f < 1 \), the technologically lagging country \(h \) has a policy advantage relative to country \(f \) that compensates for the moving cost \((\Delta_h > k \geq 0) \). (ii) The technologically lagging country is able to attract low-skilled workers \([0, s_f] \) from the advanced country, while the most skilled workers of the lagging country \((s_h, 1] \) migrate towards the advanced country if the technological advantage is sufficiently large.

Proof. Part (i) follows from direct inspection of equations (1) and (2). Indeed, for having \(0 < s_h < 1 \) and \(0 < s_f < 1 \) we need the following condition,

\[
k < \Delta_h < \beta - k \quad \text{with} \quad 0 \leq k < \frac{\beta}{2}
\]

where \(\Delta_h \equiv (g_h - g_f) + (t_f - t_h) \). It follows that \(\Delta_h \) must be positive. The proof of part (ii) is provided in the text. \(\blacksquare \)

As we highlighted above, migration is not only driven by an exogenous technological factor but can also be endogenously induced by public decisions. In fact, by creating a policy advantage \((\Delta_h > 0) \), country \(h \) is able to retain part of its workers. In addition, if the policy advantage is such that \(\Delta_h > k \), it can also attract foreign workers, inducing two-way migration. In the following, we analyze public decisions on taxes and public input in a game theoretic setting.

3.2 Employment and migration flows

In case of two-way migration, employment \(L_h \) and \(L_f \) in countries \(h \) and \(f \) are respectively

\[
L_h = \omega s_h + (1 - \omega) s_f \quad \text{and} \quad L_f = \omega (1 - s_h) + (1 - \omega) (1 - s_f).
\]

\(^8\)When labor is perfectly mobile \((k = 0) \) and \(\Delta_h > 0 \), the number of the high-skilled migrants equals that of low-skilled migrants, \(s_f = s_h \).
Using equations (1) and (2), for $s_h > 0$ and $s_f > 0$, we obtain

$$L_h = \frac{(t_f - t_h) + (g_h - g_f)}{\beta} - k(1 - 2\omega)$$

and

$$L_f = 1 - L_h,$$

where L_h must satisfy $0 < L_h < 1$, which is always verified under the conditions for two-way migration in Proposition 1. The net migration flow M_h and M_f in the countries h and f are respectively

$$M_h = L_h - \omega \quad \text{and} \quad M_f = -M_h.$$

4 Competition between equal-sized jurisdictions

In the benchmark model, we focus on equal-sized countries setting $\omega = \frac{1}{2}$. This assumption is relaxed in Section 5. Governments decide on taxes and expenditure in a game theoretical setting anticipating possible migration flows. Governments set their tax and expenditure to maximise their net revenues.\footnote{As is common in the literature, we assume a three-stage game: first governments decide expenditure on the public input and then they select the level of income taxation. This sequence follows the rule that the most irreversible decision must be made first. In the third stage, workers decide whether to migrate. We use backward induction (starting from the second stage) to derive a subgame perfect equilibrium.}

4.1 Second stage: tax decisions

The jurisdiction i ($i = h, f$) chooses the level of tax t_i that maximizes its tax revenue T_i assuming that the rival’s tax is given,

$$\max_{t_i} T_i = t_i \cdot L_i(t_i, t_j), \quad i, j = 1, 2 \quad \text{and} \quad i \neq j$$

Solving the FOCs, we get the following taxes as functions of the level of public input decided in the first stage\footnote{Second order conditions are verified: $\frac{\partial^2 T_i}{\partial t_i^2} < 0$ and $\frac{\partial^2 T_j}{\partial t_j^2} < 0$.}

$$t_h(g_h, g_f) = \frac{\beta + (g_h - g_f)}{3} \quad \text{and} \quad t_f(g_h, g_f) = \frac{2\beta - (g_h - g_f)}{3}.$$
The higher the domestic level of public input chosen in the first stage, the higher will be domestic taxes \(\frac{\partial t_i}{\partial g_i} > 0 \) but the lower will be foreign taxes \(\frac{\partial t_i}{\partial g_{-i}} < 0 \). In fact, with governments maximizing tax revenue, increasing public input boosts domestic labor supply which can ultimately be taxed more. However, if the foreign government increases its public input, labor supply decreases in the domestic jurisdiction, and thus the domestic government will maximize its net revenue if it lowers taxes to retain/attract workers.

4.2 First stage: public input decisions

In the first stage, countries set their expenditure on the public input to maximize their net revenue anticipating tax policy decisions taken in the second stage. As is standard, we assume that expenditure on the public input is subject to decreasing returns to scale. For simplification, we assume the quadratic cost function \(C(g_i) = \frac{1}{2} g_i^2, \ i = h, f \).\(^{11}\) Formally,

\[
\max_{g_h} B_h = t_h L_h - \frac{1}{2} g_h^2 \quad \text{and} \quad \max_{g_f} B_f = t_f L_f - \frac{1}{2} g_f^2
\]

The objective functions are strictly concave if \(\beta > \frac{2}{9} \). Assuming this condition throughout, we obtain the following equilibrium amounts of public input \(g_h^* \) and \(g_f^* \)

\[
g_h^* = \frac{2 - 3\beta}{3 - 9\beta} \quad \text{and} \quad g_f^* = \frac{2(1 - 3\beta)}{3 - 9\beta},
\]

and the corresponding equilibrium taxes \(t_h^* \) and \(t_f^* \)

\[
t_h^* = \beta \frac{2 - 3\beta}{4 - 9\beta} \quad \text{and} \quad t_f^* = \beta \frac{2(1 - 3\beta)}{4 - 9\beta}.
\]

The positiveness of \(t_i^* \) and \(g_i^* \) \(\forall i \in \{h, f\} \) requires that\(^{12}\)

\[
\frac{2}{9} < \beta < \frac{1}{3} \quad \text{or} \quad \beta > \frac{2}{3}.
\]

\(^{11}\)The cost of accumulating more public input increases at an increasing rate, reflecting decreasing returns to scale. Another reason can be that it becomes increasingly difficult to reach a consensus for additional expenditure.

\(^{12}\)In the equilibrium, \(g_i^* \) and \(t_i^* \) \((i = h, f) \) may have a negative impact on net wages when \(t_i^* > g_i^* \) (or, \(g_i^* - t_i^* < 0 \)). However, equilibrium net wages \((w_i - t_i^* > 0) \) will always be positive given that the exogenous parameter \(\theta \) can be as high as needed.
The equilibrium marginal migrants s^*_h and s^*_f in country h and f respectively are

$$s^*_h = \frac{2 - 3\beta}{4 - 9\beta} + \frac{k}{\beta} \quad \text{and} \quad s^*_f = \frac{2 - 3\beta}{4 - 9\beta} - \frac{k}{\beta}.$$

Accordingly, there exists an equilibrium with two-way migration if and only if $0 < s^*_h < 1$ and $0 < s^*_f < 1$. The necessary conditions follow from Proposition 1. Solving the associated system of inequalities leads to the following conditions, defining the feasible domain of β consistent with two-way migration (see Appendix A)

$$\frac{2}{9} < \beta < \frac{1}{3} \quad \text{or} \quad \beta > \frac{2}{3} \quad \text{with} \quad 0 \leq k < \frac{2}{27}.$$

(7)

This domain is consistent with two scenarios: one with technologically similar countries (small technology-gap $\beta < \bar{\beta}$), and another with different countries (large gap $\beta > \bar{\beta}$). Notice that when there is perfect mobility ($k = 0$), the definition domain expands to $\frac{2}{9} < \beta < \frac{1}{3}$ and $\beta > \frac{2}{3}$. Therefore, imperfect mobility restricts the possible domain for two-way migration.

In equilibrium, differences regarding taxes and public input are

$$t^*_f - t^*_h = \frac{-3\beta^2}{4 - 9\beta},$$

$$g^*_h - g^*_f = \frac{2\beta}{4 - 9\beta}.$$

The equilibrium policy advantage of country h, Δ_h, equals

$$\Delta_h \equiv (t_f - t_h) + (g_h - g_f) = \frac{\beta^2 - 3\beta}{4 - 9\beta},$$

(8)

which is always positive in the case of two-way migration (see Proposition 1).

Given that the differences in taxes and public input can be positive or negative according to the above definition domain of β, each country can offer lower taxes or higher public input. More precisely, if the technological gap is small, i.e., $\frac{2}{9} < \beta < \bar{\beta}$, country h will offer more of the public input ($g^*_h > g^*_f$) but will also tax labor more ($t^*_h > t^*_f$). However, when the technological gap is large, i.e. $\beta > \bar{\beta}$, country h will tax labor less ($t^*_h < t^*_f$) and also provides less public input ($g^*_h < g^*_f$). So, in any equilibrium consistent with two-way migration, countries will have an advantage in either labour taxation or public input, but no country will have both simultaneously. We summarize our findings in the following proposition.
Proposition 2 When countries are technologically similar \((\beta < \beta)\), the more skilled workers migrate to the advanced country, which will offer lower taxes, while the lower-skilled workers migrate to the lagging country, which will supply more public input.

When the technological gap is wide \((\beta > \beta)\), skilled workers migrate to the technologically advanced country, which will offer more public input, while lower skilled workers migrate to the lagging country, which will offer lower taxes.

Proof. The proof follows from studying of the sign of \(t_f^* - t_h^*\) and \(g_h^* - g_f^*\) in the feasible domain of \(\beta\) (see equation (7)). ■

The underlying intuition can be explained as follows. A large enough technological gap \((\beta > \beta)\) reduces the intensity of tax competition and makes it easier for the government in the less advanced country to undercut its rival \((t_h^* < t_f^*)\) without expecting its rival to respond by lowering taxes. However, to remain attractive for high-skill workers, the advanced country compensates for high taxation by providing more public input. When the technological gap is small \((\beta < \beta)\), tax competition is fierce and the government in the lagging country focuses on raising the public input \((g_h^* > g_f^*)\) with the government in the advanced country lowering taxes to compensate for the lower level of public input.

Proposition 2 implies the following

Corollary 1 When countries are technologically similar \((\beta < \beta)\), low taxation is the optimal fiscal policy to attract high-skilled workers. However, when differences in technology are large, the optimal policy for attracting high-skilled workers is to raise gross wages by increasing the level of public input.

Proof. See proof of Proposition 2. ■

Now we analyze net migration flows between countries. Using equations (4) and (5), equilibrium labor supplies are

\[
L_h^* = \frac{2 - 3\beta}{4 - 9\beta} \quad \text{and} \quad L_f^* = 1 - L_h^* .
\]

where \(0 < L_h^* < 1\) according to the above non-negativity conditions.

Equilibrium net migration flows are

\[
M_h^* = \frac{3}{2} \frac{\beta}{4 - 9\beta} \quad \text{and} \quad M_f^* = -M_h^*.
\]

Investigating the expressions of \(M_h^*\) and \(M_f^*\), we find...
Proposition 3 When countries are technologically similar ($\beta < \frac{2}{3}$), there is net immigration in the lagging country ($M^*_h > 0$) because the inflow of the lower-skilled workers exceeds the outflow of higher-skilled workers. However, when countries are technologically different, ($\beta > \frac{2}{3}$), there is net immigration in the advanced country ($M^*_f > 0$) given that it attracts more high-skilled workers than it loses lower-skilled workers.

Proof. From direct inspection of the equations for M^*_h and M^*_f. When $\frac{2}{3} < \beta < \frac{1}{3}$, $M^*_h > 0$ and $M^*_f < 0$. Finally, when $\beta > \frac{2}{3}$, $M^*_h < 0$ and $M^*_f > 0$. ■

In view of the above Proposition but focusing on the average skill of the migrants, we find the following

Proposition 4 The larger the technological difference between countries (i.e., higher β), the higher the average skill of migrant workers.

Proof. Given that $\frac{\partial s^*_h}{\partial \beta} > 0$ and $\frac{\partial s^*_f}{\partial \beta} > 0$, and since abilities are uniformly distributed over the interval $(0, 1)$, an increase in β causes an increase in the average ability of migrant workers. ■

This result echoes an empirical finding by Borjas (1987), who, in his seminal work, focuses on the average ability level of migration towards the US.

Finally, in any equilibrium, tax revenues are sufficient to cover expenditure. Indeed, concavity of the objective functions ($\beta > \frac{2}{3}$) ensures that $B^*_h = \frac{(9\beta-2)(3\beta-2)^2}{9(9\beta-4)^2} > 0$ and $B^*_f = \frac{\beta^{32(3\beta-1)^4}}{9(9\beta-4)^4} > 0$.

5 The role of size asymmetry

In this section, we generalize our model by relaxing the assumption of symmetric size. As we show below, differences in population size do not qualitatively alter the results in Section 4, but have the potential to expand or restrict the size of migration flows as well as the space of equilibria in which two-way migration occurs.

We now solve the game with two countries that may differ in size. In equilibrium, the level of public input in countries h and f are now

$$g^*_h = \frac{2}{3} \frac{(2-3\beta) + 3k(1-2\omega)}{4 - 9\beta} \quad \text{and} \quad g^*_f = \frac{2}{3} \frac{2(1-3\beta) - 3k(1-2\omega)}{4 - 9\beta}$$
and the corresponding equilibrium taxes are

\[t_h^o = \beta \frac{(2 - 3\beta) + 3k(1 - 2\omega)}{4 - 9\beta} \quad \text{and} \quad t_f^o = \beta \frac{2(1 - 3\beta) - 3k(1 - 2\omega)}{4 - 9\beta}. \]

It is easy to verify that if countries have equal size (i.e., \(\omega = \frac{1}{2} \)) the optimal policies are those reported in Section 4. The non-negativity conditions for \(g_i^o, t_i^o \) (\(\forall i = h, f \)) are

\[\frac{2}{9} < \beta < \frac{1}{3} - \frac{1}{2}k(1 - 2\omega) \quad \text{and} \quad \beta > \frac{2}{3} + k(1 - 2\omega). \]

Note that due to the concavity condition, equilibrium tax revenues are sufficient to cover the equilibrium expenditures, \(B_h^o = \frac{(9\beta - 2)(-3k + 3\beta + 6k\omega - 2)^2}{9(9\beta - 4)^2} > 0 \) and \(B_f^o = \frac{2\beta(-3k - 6\beta + 6k\omega + 2)^4}{9(9\beta - 4)^4} > 0 \). Comparative statics show that in equilibrium taxes and public input levels may increase or decrease with \(\omega \) depending on the size of \(\beta \).

In addition, when labor is perfectly mobile, i.e. \(k = 0 \), equilibrium taxes and public input levels no longer depend on \(\omega \). Put differently, population size asymmetry affects policy decisions only when workers face mobility costs.

In equilibrium, differences in taxes and public input levels become

\[t_f^* - t_h^* = (t_f^* - t_h^*) + 6k\beta \frac{1 - 2\omega}{9\beta - 4}, \]

\[g_h^* - g_f^* = (g_h^* - g_f^*) - 4k\frac{1 - 2\omega}{9\beta - 4}, \]

where \(t_f^* - t_h^* \) and \(g_h^* - g_f^* \) correspond to the equal-size case in Section 4.

There is two-way migration only if the following feasibility condition applies (see Appendix B for more details),

\[\frac{2}{9} < \beta < \beta^\circ, \quad \text{or} \quad \beta > \beta^\circ \quad \text{with} \quad 0 \leq k < \frac{2}{9\left[4(1 - 2\omega) + 3\right]} \quad \text{and} \quad 0 < \omega < \frac{7}{8}. \]

This mirrors condition (7) that defines the feasible domain of \(\beta \) in case of equally sized countries. Accordingly, in equilibrium the policy advantage of country \(h \) is

\[\Delta_h^o = \Delta_h^* \left(1 + \frac{2k}{\beta}(1 - 2\omega)\right) \quad \text{with} \quad \Delta_h^* = \beta \frac{2 - 3\beta}{4 - 9\beta}. \]

It appears that \(\Delta_h^o \) equals \(\Delta_h^* \) up to a factor \(1 + \frac{2k}{\beta}(1 - 2\omega) \) which is higher than 1 for \(0 < \omega < \frac{1}{2} \).

\[^{13}\] Simply taking the derivative with respect to \(\omega \): \(\frac{\partial g_h^o}{\partial \omega} = -4k\frac{\beta}{9\beta - 4}; \quad \frac{\partial g_f^o}{\partial \omega} = -4k\frac{\beta}{9\beta - 4}; \quad \frac{\partial t_h^o}{\partial \omega} = 6k\frac{\beta}{9\beta - 4}; \quad \frac{\partial t_f^o}{\partial \omega} = -6k\frac{\beta}{9\beta - 4}.\]
and lower than 1 for $\frac{1}{2} < \omega < 1$. This factor is positive in any equilibria consistent with two-way migration. This means that decreasing the size of the technologically lagging country increases its policy advantage ($\frac{\partial \Delta_h^o}{\partial \omega} < 0$).

If Δ_h^o complies with the condition of Proposition 1, we have two-way migration and, by analogy, all results in Propositions 2, 3 and 4 also hold true when there is size asymmetry. However, according to the conditions highlighted in Appendix B, we see that if the lagging country is small ($0 < \omega < \frac{1}{2}$), it is more likely that its government attracts workers with lower taxes than with higher public input. The opposite is true if the lagging country is large. Finally, size asymmetry also affects the share of migrant workers. If the technologically lagging country is relatively small, its government will be able to retain more of its higher-skilled workers and attract a higher share of foreign lower-skilled workers. The contrary occurs when the technologically lagging country is large. The reason is that government policy in the lagging country becomes more (less) aggressive when it is relatively small (large). In fact, we see that $\Delta_h^o > \Delta_h^* (\Delta_h^o < \Delta_h^*)$ when $0 < \omega < \frac{1}{2} (\frac{1}{2} < \omega < 1)$.

The following proposition summarizes the results of this section,

Proposition 5 (i) Two-way migration can occur when countries differ in size as well as technology. Similar to the benchmark case, the government in the technologically lagging country will offer lower taxes or more public input to attract migrant workers. The choice of policy instrument depends on whether the technological gap is small ($\beta < \beta^*$) or large ($\beta > \beta^*$).

(ii) If the lagging country is small, it is more likely to offer lower taxes and less likely to provide more public input. If the lagging country is small, it is also able to retain more high-skilled workers and attract more lower-skilled foreign workers.

Proof. The first part is explained in the text and by analogy with the case where countries are equally sized (see Appendix B). A proof of the second part is provided in Appendix C.

6 Conclusions

Economic, political, cultural, and historical factors all play a role in shaping migration patterns, and policy choices can have both intended and unintended consequences. This paper provides a theoretical model that generates two-way migrations endogenously from government decisions to maximize net revenue.

Our main findings are as follows. As expected, the most skilled workers migrate to the technologically advanced country. In response, the government in the lagging country can strategically lower
taxes or increase infrastructure to attract mobile workers. If these incentives exceed the migration cost, the lagging country can attract foreign workers with lower skills while simultaneously retaining part of its skilled workforce. This dynamic generates a two-way migration between technologically advanced and lagging countries.

It is not optimal for the government in the technologically lagging country to simultaneously offer lower taxes and more public input. When the technological gap between the countries is small, the optimal strategy for the government in the lagging country is to provide more public input, allowing its rival to attract skilled labor through low taxation. However, when the technological gap is large, the optimal strategy for the government in the lagging country is to offer lower taxes, while the technologically advanced country will spend more on public input. Generally, we find that the average skill of migrant workers increases with the technological gap.

Finally, introducing heterogeneity in country size does not significantly alter the results. When the technologically lagging country is relatively small, its government is more likely to offer lower taxes and less likely to offer more public input. When it is relatively large, its government is more likely to raise its public input than to lower taxes.

References

Appendix

Appendix A: Conditions for an equilibrium consistent with two-way migration

The policy advantage provided by the lagging country is

\[
\Delta_h^* = \beta \frac{2 - 3\beta}{4 - 9\beta} .
\]

(9)

According to proposition 1, two-way migration requires that \(0 \leq k < \Delta_h^* < \beta - k\) and \(\beta > 2k\).
Given that a necessary condition for two-way migration is that country h provides a positive policy advantage $\Delta_h^* > 0$, we can identify the necessary conditions compatible with two different scenarios,

Case 1. $(4 - 9\beta > 0)$ or $\beta < 4/9 < 2/3$

a. First we verify that $\Delta_h^* > k$. This inequality is satisfied when

$$-3\beta^2 + (9k + 2)\beta - 4k > 0. \quad (10)$$

b. Second we require that $\Delta_h^* < \beta - k$ This inequality is satisfied when

$$-6\beta^2 + (9k + 2)\beta - 4k > 0. \quad (11)$$

Both of the two quadratic inequalities above are satisfied for $2/9 < \beta < \overline{\beta}$ with $0 \leq k < 2/27$.

Where $\overline{\beta} = \frac{1}{12} \left(9k + 2 + \sqrt{3k (27k - 20) + 4} \right)$ is the smallest of two positive roots of the quadratic inequalities (10) and (11).

Case 2. $(4 - 9\beta < 0)$ $\beta > 2/3 > 4/9$

It follows that $\Delta_t^* > 0$ and $\Delta_g^* < 0$ while $\Delta_h^* > 0$.

a. First we verify that $\Delta_h^* > k$. This inequality is satisfied when

$$3\beta^2 - (9k + 2)\beta + 4k > 0. \quad (12)$$

b. Second we require that $\Delta_h^* < \beta - k$, which is satisfied when

$$6\beta^2 - (9k + 2)\beta + 4k > 0. \quad (13)$$

Both of the quadratic inequalities (12) and (13) are satisfied for $\beta > \overline{\beta}$ with $0 \leq k < 2/27$.

Where $\overline{\beta} = \frac{1}{6} \left(9k + 2 + \sqrt{3k (27k - 4) + 4} \right)$ is the biggest of all the roots of the quadratic inequalities (12) and (13).

Finally, combining the results for both cases with the positiveness conditions for taxes and infrastruc-
ture provision, we get the following feasible set of β compatible with two-way migration,

\[\frac{2}{9} < \beta < \frac{1}{3} \quad \text{or} \quad \beta > \frac{2}{3}, \]

with $0 \leq k < \frac{2}{27}$.

Appendix B: Conditions for an equilibrium consistent with two-way migration and size asymmetry

We show below that size asymmetry does not significantly change the analysis of the conditions for an equilibrium with two-way migration discussed in section 4.

To see that, notice that the policy advantage provided by the lagging country is

\[\Delta_h^o = \Delta_h^* \left(1 + \frac{2k}{\beta} \delta\right) \quad \text{with} \quad \Delta_h^* = \beta \frac{2 - 3\beta}{4 - 9\beta} \quad \text{and} \quad \delta = 1 - 2\omega. \]

(14)

According to proposition 1, two-way migration requires that $0 \leq k < \Delta_h^o < \beta - k$ and $\beta > 2k$.

Consequently, a necessary condition for two-way migration is that country h provides a positive policy advantage $\Delta_h^o > 0$. Given that, from equation (14), $\text{sign}(\Delta_h^o) = \text{sign}(\Delta_h^*)$, we can identify the necessary conditions compatible with two different scenarios, 14

- Case 1 ($4 - 9\beta > 0$) with $\beta < 4/9 < 2/3$, in which competition for talents focuses on infrastructure provision,

- Case 2 ($4 - 9\beta < 0$) with $\beta > 2/3 > 4/9$, in which competition focuses on income taxes.

In the following, we determine for each of the cases discussed above, the range of β that verify the conditions for two-way migration (see Proposition 1): $0 \leq k < \frac{\beta}{2}$ and $k < \Delta_h^o < (\beta - k)$.

Case 1. ($4 - 9\beta > 0$) or $\beta < 4/9 < 2/3$

a. First we verify that $\Delta_h^o > k$. This inequality is satisfied when

\[-3\beta^2 + (9k + 2 - 6k\delta) \beta - 4k(1 - \delta) > 0. \]

(15)
b. Second we require that $\Delta^o_h < \beta - k$. This inequality is satisfied when

$$-6\beta^2 + (9k + 6k\delta + 2)\beta - 4k(1 + \delta) > 0 .$$ \(16\)

Both of the two quadratic inequalities above are satisfied for $\frac{2}{9} < \beta < \beta'$ with $0 \leq k < \frac{2}{9(4\delta+3)}$ and $-\frac{3}{4} < \delta < 1$ or $0 < \omega < \frac{7}{8}$. Where $\beta' = \frac{1}{12} \left(9k + 6k\delta + 2 + \sqrt{9k^2 (2\delta + 3)^2 - 12k (6\delta + 5) + 4}\right)$ is the smallest of two positive roots of the quadratic inequalities (15) and (16).

Case 2. \((4 - 9\beta < 0)\) or $\beta > 2/3 > 4/9$

It follows that $\Delta^o_t > 0$ and $\Delta^o_g < 0$ while $\Delta^o_h > 0$.

a. First we verify that $\Delta^o_h > k$. This inequality is satisfied when

$$3\beta^2 - (9k + 2 - 6k\delta)\beta + 4k(1 - \delta) > 0 .$$ \(17\)

b. Second we require that $\Delta^o_h < \beta - k$, which is satisfied when

$$6\beta^2 - (9k + 6k\delta + 2)\beta + 4k(1 + \delta) > 0 .$$ \(18\)

Both of the quadratic inequalities (17) and (18) are satisfied for $\beta > \beta'$ with $0 \leq k < \frac{2}{9(4\delta+3)}$ and $-\frac{3}{4} < \delta < 1$ or $0 < \omega < \frac{7}{8}$. Where $\beta' = \frac{1}{6} \left(9k - 6k\delta + 2 + \sqrt{9k^2 (2\delta - 3)^2 - 12k (1 - 2\delta) + 4}\right)$ is the biggest of all the roots of the quadratic inequalities (17) and (18).

Finally, combining the results for both cases with the positiveness conditions for taxes and infrastructure provision, we get the following feasible set of β compatible with two-way migration,

$$\frac{2}{9} < \beta < \beta^o = \min \left\{ \beta', \left(\frac{1}{3} - \frac{k\delta}{2}\right) \right\} \quad \text{or} \quad \beta > \beta^o = \beta' > \max \left\{ \left(\frac{2}{3} + k\delta\right), \frac{2}{3} \right\} ,$$

with $0 \leq k < \frac{2}{9(4\delta+3)}$ and $-\frac{3}{4} < \delta < 1$ or $0 < \omega < \frac{7}{8}$.

Appendix C: proof of proposition 5 part (ii)

Part (iia) - The effect of a decrease in the lagging country’s relative size ω (increase in δ) We show how size asymmetry affects the space of equilibria with two-way migration.
First, we show that the space of equilibria in which infrastructure provision is the preferred strategy contracts if the lagging country is the smallest country and expands otherwise.

Second, we show that the space of equilibria in which tax underbidding is the preferred strategy expands if the lagging country is the smallest country and contracts otherwise.

1- Lower subset: $\frac{2}{3} < \beta < \beta^0$. To show how size asymmetry modifies the lower subset, it suffices to check how the upper bound β^0 changes relative to $\delta = 1 - 2\omega$. Thus, we demonstrate that

$$\frac{\partial \beta^0}{\partial \delta} = -\frac{k}{2} \left(\frac{6 - 3k (2\delta + 3)}{\sqrt{9k^2 (2\delta + 3)^2 - 12k (6\delta + 5) + 4}} - 1 \right) < 0,$$

and

$$\frac{\partial (\frac{1}{2} - \frac{k\delta}{2})}{\partial \delta} < 0.$$

Consequently, any reduction in the relative size of the lagging country reduces β^0 and so reduces the feasible set of β consistent with two-way migration and infrastructure attractiveness of the lagging country.

2-Upper subset: $\beta > \beta^0$. We now check how the lower bound β^0 changes relative to δ. So, we demonstrate that

$$\frac{\partial \beta^0}{\partial \delta} = k \left(\frac{3k (2\delta - 3) + 2}{\sqrt{9k^2 (2\delta - 3)^2 - 12k (1 - 2\delta) + 4}} - 1 \right) < 0,$$

A decrease in the relative size ω has a negative effect on the lower bound β^0 and thus expands the feasible set of β consistent with two-way migration and tax attractiveness of the lagging country.

Part (iib)- Impact of size asymmetry on migration. Compared to the benchmark case ($\omega = \frac{1}{2}$), a small (large) technologically lagging country is able to retain a higher (lower) share of its most skilled workers, and attract a higher (lower) share of lower skilled foreign workers.

In order to prove this, consider the (equilibrium) marginal migrants in country h and f,

$$s_h^* = s_h^0 + 2k (1 - 2\omega) \frac{2 - 3\beta}{\beta (4 - 9\beta)} \quad \text{with} \quad s_h^0 = \frac{2 - 3\beta}{4 - 9\beta} + \frac{k}{\beta},$$

$$s_f^* = s_f^0 + 2k (1 - 2\omega) \frac{2 - 3\beta}{\beta (4 - 9\beta)} \quad \text{with} \quad s_f^0 = \frac{2 - 3\beta}{4 - 9\beta} - \frac{k}{\beta}.$$
For a relatively small lagging country \((0 < \omega < \frac{1}{2})\), we observe that \(s_h^0 > s_h^*\) and \(s_f^0 > s_f^*\). For a relatively large \((\frac{1}{2} < \omega < 1)\) country, we observe that \(s_h^0 < s_h^*\) and \(s_f^0 < s_f^*\).
BANQUE CENTRALE DU LUXEMBOURG
EUROSYSTÈME

2, boulevard Royal
L-2983 Luxembourg

Tél.: +352 4774-1
Fax: +352 4774 4910

www.bcl.lu • info@bcl.lu